
Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Improving accuracy of probabilistic-based causal broadcast

Causal broadcast is at the core of many distributed, collaborative, and database applications. It
ensures that any two messages whose broadcasts are causally related are delivered respecting
their broadcast order. Its implementation usually includes extra control information attached to
the messages. However, it has been proved that the size of such an information grows linearly
with N, the size of the system, being, therefore, not scalable in case of large-scale applications.
In [11], the authors present a scalable causal broadcast algorithm using, as control information,
probabilistic logical clocks, whose size does not depend on N. However, even if the broadcast
provides causal delivery of messages with a high probability, some of the messages can still
be delivered out of causal order. To tackle this problem, a mechanism to detect some possible
delivery errors is offered. Aiming at improving such an error detection, we propose in this pa-
per a new mechanism that, by analyzing received messages before delivering them, identifies
those messages which do not have causal dependencies, not detected by the causal broadcast
algorithm neither the authors’ error detector.
The efficiency and overhead of our error detector were firstly evaluated theoretically and then
experiments on the OMNeT++ simulator were conducted with both error detectors. Results
show that our error detector outperforms the authors’ one and ensures causal broadcast with a
much higher probability.

1. Introduction

Distributed and parallel applications are composed of an increasing number of processes that
often cooperate by acting as a single group. In order to exchange information within the group,
they usually use a communication service, built on top of point-to-point send/receive net-
works, that offer the primitives broadcast and delivery. The first one sends a message to all
members of the group and the second one delivers a received message to the application.
On the other hand, many applications also require causal broadcast ordering, i.e., any two
messages, whose broadcasts are causally ordered as defined by Lamport’s happened before re-
lationship [8], must be delivered by all processes of the group respecting such an order. For
instance, if process p1 broadcasts a messagem1 to inform its update to a shared data and, after
having delivered m1, p2 broadcasts m2 with its update to the same shared data, no member
of the group will deliver m2 before m1, i.e., processes will see the updates in the order that
they causally took place. Therefore, causal broadcast, which was first introduced by Birman in
the ISIS system [2], provides the same two previous primitives, respecting broadcast causality
order.
Many implementations of causal broadcast exist in the literature. Several of them include control
information on messages, such as logical vector clocks with one entry per process, that grows
linearly with the number of processes [14][5][9] being, thus, not sustainable in large-scale sys-
tems. Others make assumptions on the network topology [6][13][3], being not suitable for dy-
namic systems where processes can join and leave the system.
By arguing that the probability to deliver a message out of causal order in some real systems
might be quite low, Mostefaoui et al. proposed in [10] the scalable probabilistic logical clocks.
Unfortunately, even though probabilistic clocks deliver messages causally with a high probabi-
lity, some of them are still delivered out of causal order, especially in systems where the above



system conditions are not always satisfied during application execution. To tackle this problem,
Mostefaoui et al. present in [11] a mechanism to detect some possible delivery errors before de-
livering a message to the application. However, such a mechanism does not detect all out of
causally ordered messages nor provides any procedure to handle those messages that it detects
as out of causal order.
This paper proposes a new error detector for causal broadcast based on probabilistic clocks
which, by analyzing received messages before delivering them, identifies those messages which
do have causal dependencies not detected by the causal broadcast algorithm nor the error de-
tector proposed in [11]. It also detects causal dependencies of messages tagged as not causally
ordered by the latter, delivering them in causal order. Our error detector is based on hashs and
presents a very high accuracy with very few mistakes.
We have theoretically analyzed our hash-based error detector. Furthermore, experiments were
conducted on OMNeT++[18] simulator with our error detector as well as the one proposed
in [11]. Both theoretical and experimental evaluations show that our error detector misses very
few - experimentally none - out of causal ordered messages, confirming, therefore, its good
accuracy. We also present performance results concerning scalability, hash computation ove-
rhead, and resilience to message load.
The paper is organized as follows. Section 2 and Section 3 respectively address some back-
ground concepts and the considered model. Our proposed procedure to retrieve a message’s
causal dependencies is presented and discussed in Section 4 while Section 5 describes our hash-
based error detector. Performance results are presented in Section 6. Finally, Section 7 concludes
the paper.

2. Background

Causal order ensures that processes deliver messages while respecting the causal relation bet-
ween them, based on the happened before relation [8] introduced by Leslie Lamport :

Happened before relation : Considering two events e1 and e2, e1 causally precedes e2, or e1 → e2
iff : (a) e1 and e2 occur on the same process and e1 precedes e2 or (b) for a message m e1=send(m) and
e2=deliver(m) or (c) there exists an event e3 such that e1 → e3 and e3 → e2.

If the send of m precedes the send of m ′, we have the formal definition of causal order :
send(m) → send(m ′) ⇒ deliver(m) → deliver(m ′). The delivery of a message is delayed
until it is causally ordered. Therefore, a message might not be delivered at reception, and the
delivery and reception of a message are considered distinct events. We define causal broadcast
by applying causal order to broadcast messages and adding the condition that each message
should be delivered exactly once :

Causal Broadcast Processes deliver messages exactly once by respecting the causal relation between
them. If a message m causally precedes a messages m ′, then all processes must deliver m before m ′ :
broadcast(m)→broadcast(m’) ⇒ deliver(m)→deliver(m’).

Charron-Bost proved in [4] that logical vector clocks with one entry per process are the mini-
mal structure required to exactly track causality. However, these clocks are not suited to large
distributed systems, because assigning one entry of the vector per process does not scale. Au-
thors of [10][16][15] propose approaches that use a vector much smaller than the number of
processes in the system. Thus, they do scale, but they cannot exactly capture causality. Among

2



them, Probabilistic clocks [10] have the best performances. Hence, this paper uses Probabilistic
clocks to track causality of events probabilistically.
Probabilistic clocks track causality with a vector V of size M, with M << N, where N cor-
responds to the number of processes of the system. Each process pi keeps a local vector Vi,
whose entries are initialized to 0. Algorithm 1 describes the probablistic broadcast algorithm
by process pi.

Algorithm 1: Probabilistic broadcast at process pi
Broadcast of messagem

1: ∀x ∈ f(i), Vi[x] = Vi[x] + 1
2: m.V = Vi
3: broadcast(m)

Upon reception of messagem from pj
4: waitUntil((∀x ∈ f(j), Vi[x] ≥ m.V [x] − 1)∧∀k /∈ f(j), Vi[k] ≥ m.V [k])
5: ∀x ∈ f(j), Vi[x] = Vi[x] + 1
6: deliver(m)

Before broadcasting a message, pi increments those entries of its local vector clock Vi given by
the function f(pi) and then attaches Vi tom. The values of such a vector result fromm’s causal
dependencies plus the increases of the entries V [k], k ∈ f(pi) when pi broadcasts m. Upon
reception of a message m from pj, pi should wait until (1) ∀x ∈ f(pj), Vi[x] ≥ m.V [x] − 1 and
(2) ∀x /∈ f(pj), Vi[x] ≥ m.V [x]. Once the two conditions are satisfied, pi increments the entries
k ∈ f(pj) of its local clock Vi, and then deliversm.
Aiming at reducing the number of out of causal order deliveries, the same authors have pro-
posed an error detector which tests the condition ∃x ∈ f(pj), Vpi [x] = m.V [x] − 1 on a message
m once its delivery conditions are satisfied and before delivering it. If the condition is false,
thenm is delivered. Otherwise, an error handler function handlesm. Note that the error detec-
tor might tag causally ordered messages as not causally ordered, i.e., the error detector might
return false positives.

3. Model

We consider a set of processes Π = {p1, p2, . . . , pN}. Processes broadcast application messages
to all processes of the system at an arbitrary rate.
Causal order of broadcasted messages is ensured by the use probabilistic clocks [10]. Each
process pi maintains a local probabilistic clock Vi of fixed sizeM << N.
Each message m is uniquely identified by the tuple (pi, seq), where pi is the identity of the
sending process ofm, and seq the sequence number that pi assigns tom. Each message is com-
posed of its id (pi, seq), its attached probabilistic clock V , and the data carried by the message.

4. Handling messages tagged as not causally ordered

Whenever the error detector informs pi that it cannot deliver a message m, broadcasted by pj,
because it might has not delivered yet all the messages that causally precedem, pi must identify
and deliver these messages before deliveringm. To this end, Algorithm 2 extends Algorithm 1.

3



Each process pi has the following variables :
— seqi : sequence number of pi’s next broadcast message.
— Vi : pi’s probabilistic clock.
— Reci : set that contains the messages received by pi but not delivered yet.
— Delivi : set that contains the ids (pj, seq) of messages that pi delivered.
— Depmsgi : set that contains the ids (pj, seq) of causal message dependencies of pi’s next

broadcast message.
— Sdepi : set that contains for each messagem broadcasted by pi the tuple (seq, dep), where
seq is the sequence number that pi attributes tom and dep ism’s causal dependencies.

Algorithm 2: Probabilistic broadcast by pi with message dependency requesting
broadcast

1: seqi = seqi + 1
2: Sdepi = Sdepi ∪ {(seqi, Depmsgi)}
3: ∀e ∈ f(i), Vi[e] = Vi[e] + 1
4: m.V = Vi
5: m.(p, seq) = (pi, seqi)
6: broadcast(<APP,m>)
7: Depmsgi = {(pi, seqi)}

Upon reception of <APP,m> from pj
8: Reci = Reci ∪ {m}

9: waitUntil((∀x ∈ f(pj), Vi[x] ≥ m.V [x] − 1)∧∀k /∈ f(pj), Vi[k] ≥ m.V [k])
10: if errorDetector(m) then
11: send(<REQ,m.seq>) to pj
12: else
13: handle(pj,m.seq)
Upon reception of <REQ,seq>) from pj
14: send(<RSP,(seq,dep) ∈ Sdepi>) to pj
Upon reception of <RSP,seq,dep> from pj
15: waitUntil(∀(pk, seqk) ∈ dep, (pk, seqk) ∈ Delivi)
16: handle(pj,seq)
handle(pj,seqj)
17: deliver(m) : m ∈ Reci ∧m.(p, seq) = (pj, seqj)
18: Reci = Reci\{m}

19: ∀e∈ f(pj), Vi[e]=Vi[e]+1
20: Depmsgi = Depmsgi ∪ {(pj, seqj)}
21: Delivi = Delivi ∪ {(pj, seqj)}

For every message m that pi broadcasts, it must store m’s dependencies (line 2) in Sdepi , in
order to reply to processes whose error detector decides that m might not be causally ordered,
and which will therefore requestm’s causal dependencies to pi.
Upon reception of message m, pi waits until the delivery conditions of m’s probabilistic clock
are satisfied (line 9), and then it executes the error detector onm (line 10) (Algorithm 2), which
returns true if it concludes that m might not be correctly causally ordered. Process pi then

4



requests m’s causal dependencies by sending a request message REQ to pj, the sender of m.
The latter replies with message RSP that contains m’s causal dependencies (line 14). When
receiving RSP, pi waits until it has delivered all of m’s causal dependencies (line 15), then it
deliversm (line 16).

5. Error Detector

Our error detector, described in Algorithm 3, is based on hashed causal dependencies. It de-
tects out of causally ordered messages with a much higher probability than the error detector
proposed in [10] (see Section 2, Algorithm ??). Basically, a process which broadcasts a message
m, computes the hash Hm of the causal dependencies of m, attaches Hm to m, and then broad-
casts it. Upon reception, the destination processes compute the hash values of different sets of
dependencies, aiming to find a dependency set whose hash value is equal to Hm.
Let’s consider an execution from the broadcast of message m by process pi till its delivery by
pj. First, pi computes the hash Hm of m’s causal dependencies Depm, attaches Hm to m and
then broadcasts m. A process pj executes the error detector on m once the delivery conditions
of m are satisfied (Algorithm ?? line 4). The error detector of pj builds dependency sets with
messages that pj has already delivered (Algorithm 3 line 1), and computes their respective
hash value (Algorithm 3 line 3), in order to find a dependency set whose hash value is equal
to Hm. The error detector considers that, for a set of dependencies Dep ′

m with hash HDep ′
m

,
if HDep ′

m
= Hm, then Dep ′

m = Depm. The error detector returns false (no error, the message
can be delivered) if it finds a set Dep ′

m. Otherwise, it returns false. In this case, pj must send a
REQmessage to pi to requestm’s causal dependencies. Upon reception of the reply RSP which
contains the causal dependencies Depm of m, pj delivers m once it has delivered all messages
(id, seq) ∈ Depm.
Collisions may occur when hashing dependency sets, i.e., two dependency sets may have the
same hash value, which means that the error detector may find a setDep ′

m with hash HDep ′
m
=

Hm, butDep ′
m 6= Depm. However, such a situation is very unlikely to happen, since a hash of x

bits corresponds to a hash space of 2x values. A parameter l bounds the number of computed
hashs, because if pj has not delivered yet a dependency of m, then the error detector would
compute many hashs without finding the dependency set ofm.

Algorithm 3: Hash error detector executed by pi
1 Input :m : message from pj to test

1: Comb = combinations of messages in Delivi
2: for C ∈ Comb do
3: if computeHash(C)==m.Hm then
4: return false # No error detected
5: return true # Error detected

6. Experimental results

Experiments were carried out on the OMNET++ simulator. Each process generates messages
according to a Poisson-distribution with parameter δ. Messages have a propagation time follo-
wing a normal distribution N(100, 20). In the first experiment, we have evaluated the number

5



of out of causal order deliveries compared to the error detector of [10] and the probabilistic
clock algorithm without an error detector. Second, we measured the impact of the clock’s size
on the number of messages whose causal dependencies are requested. Third, we measured the
impact of the number of nodes with a constant message load.
The first experiment evaluates the number of messages delivered out of causal order of the pro-
babilist clock causal broadcast : (1) without any error detector, (2) with the error detector propo-
sed in [10], and (3) our error detector. The experiment comprises 200 processes that broadcast a
message every 2 seconds, i.e., 100 messages are broadcasted per second. The probabilistic clock
has 50 entries and 100 000 messages are broadcasted during the experiment.
Table 1 gives the number of messages delivered out of causal order for each algorithm. When
the algorithm uses no error detector, 507 out of 100 000 messages are delivered out of causal
order Among them, the error detector proposed in [10] only detects 5 messages, i.e., 502 mes-
sages are still delivered out of causal order. On the other hand, our error detector detects all out
of causal ordered messages, i.e., no message is delivered out of causal order.

Algorithm Probabilistic Mostéfaoui Hash error detector
Errors 507 502 0

TABLE 1 – Messages delivered out of causal order

The second experiment evaluates the impact of the probabilistic clock size in the number of
messages whose dependencies are requested. Figure 1 shows the rate of dependency requests
(number of REQ messages) / ((number of broadcasted messages)*(number of processes)) of our error
detector with three vector clock size (20,25, and 50), when the number of messages broadcas-
ted per second increases. Results show that the rate of dependency requests decreases when the
size of the probabilistic clock increases. The reason is that the probability that a process requests
the dependencies of a message m increases with the number of not detected concurrent mes-
sages to m, because those messages are taken into account when computing the dependency
set of m. Increasing the size of the probabilistic clock increases the probability that concur-
rent messages tom are detected. Therefore, the size of the probabilistic clock should be chosen
depending on the number of messages broadcasted per second in the system.
The third experiment evaluates the rate of dependency requests, i.e., (number of REQ messages)
/ ((number of broadcasted messages)*(number of processes)), of our hash error detector. The size of
the probabilistic clock is set to 50 entries and processes increment 2 entries at each broadcast.
Table 2 shows the rate of dependency requests when varying the number of processes but
keeping a constant number of 110 broadcasted messages per second. Results confirm that the
rate of dependency requests does not vary much when the number of processes increases.

Request rate(10−4) 2.21 6.80 2.81 6.14 5.78
Number of processes 500 1000 2000 3000 5000

TABLE 2 – Request rate with a constant message load

7. Conclusion

In this paper we presented an error detector based on hashs. The proposed error detector hea-
vily reduces the number of out of causal order delivered messages when providing causal
broadcast with probabilistic clocks. Experimental results show that the presented error detec-
tor misses very few -experimentally none- not causally ordered messages and that it requests
the causal dependencies of few messages.

6



Bibliographie

1. N. Adly and M. Nagi. Maintaining causal order in large scale distributed systems using a
logical hierarchy. In IASTED Int. Conf. on Applied Informatics, pages 214–219, 1995.

2. K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1) :47–76, 1987.

3. S. Blessing, S. Clebsch, and S. Drossopoulou. Tree topologies for causal message delivery.
In AGERE workshop, pages 1–10, 2017.

4. B. Charron-Bost. Concerning the size of logical clocks in distributed systems. Inf. Process.
Lett., 39(1) :11–16, 1991.

5. C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
11th Australian Computer Science Conference, 1988.

6. R. Friedman and S. Manor. Causal ordering in deterministic overlay networks. Technical
report CS-2004-04, Technion - Computer Science Department, 2004.

7. Ajay D. Kshemkalyani, Min Shen, and Bhargav Voleti. Prime clock : Encoded vector clock
to characterize causality in distributed systems. J. Parallel Distributed Comput., 140 :37–51,
2020.

8. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7) :558–565, 1978.

9. F. Mattern. Virtual time and global states of distributed systems. In Parallel And Distributed
Algorithms, pages 215–226, 1988.

10. A. Mostéfaoui and S. Weiss. Probabilistic causal message ordering. In Parallel Computing
Technologies - 14th International Conference, PaCT, pages 315–326, 2017.

11. Achour Mostefaoui and Stéphane Weiss. A Probabilistic Causal Message Ordering Mecha-
nism. Research report, LS2N, Université de Nantes, May 2017.

12. B. Nédelec, P. Molli, and A. Mostéfaoui. Causal broadcast : How to forget? In 22nd Inter-
national Conference on Principles of Distributed Systems,OPODIS, 2018.

13. B. Nédelec, P. Molli, and A. Mostéfaoui. Breaking the scalability barrier of causal broadcast
for large and dynamic systems. In 37th IEEE Symposium on Reliable Distributed Systems,
SRDS, pages 51–60, 2018.

14. R. Prakash, M. Raynal, and M. Singhal. An efficient causal ordering algorithm for mobile
computing environments. In 16th International Conference on Distributed Computing Systems,
pages 744–751, 1996.

15. L. Ramabaja. The bloom clock. CoRR, abs/1905.13064, 2019.
16. F. Rojas and M. Ahamad. Plausible clocks : Constant size logical clocks for distributed

systems. In WDAG 1996, pages 71–88, 1996.
17. Mukesh Singhal and Ajay D. Kshemkalyani. An efficient implementation of vector clocks.

Inf. Process. Lett., 43(1) :47–52, 1992.
18. A. Varga. The omnet++ discrete event simulation system. Proc. ESM’2001, 9, 2001.

7



A. Experimental results

30 40 50 60 70
Message load (messages/second)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

Re
co

ve
ry
 ra

te
 

20
25
50

Figure 1 : Request rate following the number of messages broadcasted per seconds for
different vector clock sizes

8


