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Résumé
Federated Learning (FL) is a new area of distributed Machine Learning (ML) that emerged to
deal with data privacy concerns. In FL, each client has access to a local private dataset. At every
round, a client trains the model with its local dataset and sends the weights to a central server.
The latter aggregates all client weights and then sends the final weights back to the clients.
This approach is attractive in many domains as it allows multiple institutions to collaborate on
an ML task without sharing their data. However, most ML models used in FL have millions
of weights exchanged in each message. The messages sent between a client and the server can
achieve gigabytes of size and are exchanged several times in the whole FL execution. This work
presents a preliminary analysis of execution times and costs of a FL application in a multi-cloud
scenario. Experiments were conducted considering executions on the Amazon Web Services,
Google Cloud Provider, and also in both cloud providers at the same time.

Mots-clés : Cloud Computing, Federated Learning, Time and Cost Evaluation

1. Introduction

Federated Learning (FL) is a recent type of distributed Machine Learning (ML) in which the
participating clients do not share their private data [29]. The clients federation solves the lear-
ning task coordinated by a central server without sharing the data. Instead, each client com-
putes and communicates only the model weights to update the current global model kept by
the server. This server-clients architecture of FL is classified into Cross-Device or Cross-Silo Fe-
derated Learning, depending on the connected client’s type. A Cross-Device Federated Lear-
ning has low-powered devices as clients [19, 21] while a Cross-Silo Federated Learning has
different companies or institutions as clients (e.g., hospitals [22]) with private datasets willing
to collaborate to create a global model. In this work, we focus on the second type of Federated
Learning, in which the central server can assume that all clients are available during the whole
execution, and there are usually fewer clients (less than 10 [15]).
McMahan et al. [19] proposed the term Federated Learning in 2017 as a learning technique that
allows users to collectively benefit from shared models trained from distributed data without
centrally storing them. The authors presented a Cross-Device FL in which the clients are mobile
phones. Since then, this area has received much attention from researchers due to the increasing
concern with data privacy. In traditional distributed ML, participants usually exchange data to
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balance their execution times. However, with the rise of data protection laws (e.g., GPDR 1 in
Europe and LGPD 2 in Brazil), application domains that handle sensitive data cannot share it
anymore and depends on FL to create good prediction models.
Moreover, the digital data created by an institution and used to train ML algorithms increases
rapidly. Most institutions cannot upgrade their data centers due to high financial costs. One
viable option is the use of cloud storage services, in which the user only pays for the amount
of stored data. Many cloud providers offer these storage services with different privacy gua-
rantees and data availability. For example, in the Google Cloud provider, the user can store the
data in a multi-region scenario. The data is available in different regions of the same country,
and the user can determine who can access it.
In this scenario, each participating institution of the FL environment can choose the best sto-
rage option among the different cloud providers. According to Li et al. [14], the response time
to access a file in one cloud provider can be twice the time to access it in another provider.
Besides, they show that the maximum throughput of one cloud provider can vary up to 57%,
and in another cloud provider varies less than 2%, depending on the cloud region used. Moreo-
ver, inside the same cloud provider, diverse storage options have different response times and
throughput, as presented by Teylo et al. in [31]. Thus, each institution chooses the best cloud
provider, cloud region, and storage service combination based on its respective needs, leading
to a scenario where FL clients have their data in different cloud providers and, to preserve
privacy, it is prohibitive to transfer all data to the same cloud provider.
In previous works [2, 3], we present FL scenarios for a biomedical application that searches for
tumor-infiltrated lymphocytes to estimate the patient survival rate using Convolutional Neural
Networks (CNNs) as models. These models extract knowledge from images using millions of
neurons, which are grouped into layers. Each neuron consists of an activation function and re-
ceives the results of the previous layer multiplied by weights, which are arbitrary float pointing
values, as input. Thus, to train the model, it is necessary to multiply each image (represented by
a matrix) by all layers of the network several times, which requires a huge computational po-
wer. One option to achieve this performance is using accelerators, such as Graphics Processing
Units (GPUs).
Besides the storage services, cloud providers offer Virtual Machines (VMs) with GPUs in a
service generically called Infrastructure-as-a-Service (IaaS). The user only pays for what he/she
uses (pay-as-you-go scheme), with no costs for hardware maintenance or energy consumption.
Furthermore, the user has access to the newest computational resources as soon as the provider
renders them available to hire. In Amazon Web Services (AWS), for example, there are many
predefined types of VMs, also called instances, with different NVIDIA GPU architectures, from
Kepler to Volta [27]. In Google Cloud Platform (GCP), the user can attach GPUs to a predefined
or custom instance type [11].
To the best of our knowledge, few works tackle the problem of FL on clouds in the related lite-
rature. Liu et al. [18] present a hierarchical FL architecture with mobile devices as clients while
Fang et al. [5] propose an architecture for Federated Learning in the cloud focusing on privacy.
However, both of them simulate the FL environment in a local machine and present only these
results in their evaluation. Rajendran et al.present in [22] a FL approach whose results concern
two Machine Learning models in a scenario with two clients in both a simulated environment
and on Microsoft Azure Cloud Databricks [4], an open-source tool for data engineering and
collaborative data science, to exchange the ML model between two institutions.

1. https ://gdpr-info.eu/
2. http ://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709compilado.htm
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In our previous work, all the FL clients were in the same zone of Amazon Web Services (AWS),
in us-east-1 (North Virginia). As explained before, this scenario does not properly reflect real
choices, as institutions can store their datasets in different cloud providers and cloud regions.
Thus, in this paper, we investigate how the location of both clients and datasets impacts the
total FL execution time, and particularly the spent time in the synchronization steps in different
cloud scenarios. Thus, we deploy the clients and the server across two providers, AWS and
GCP. Our results show that the allocation of clients and servers has a key role in the execution
times and financial costs of the FL application.
The remaining of this paper is organized as follows. Section 2 presents concepts of cloud infra-
structures. The used application in our experiments, a Federated Learning for solving a Tumor-
Infiltrating Lymphocytes Classification Problem, is presented in Section 3. Section 4 shows our
experimental results. Finally, Section 5 presents some conclusions and future work.

2. Cloud Infrastructures

Cloud providers divide their physical infrastructure into cloud regions, which are independent
and isolated geographic areas [28, 9]. For example, the first region in the eastern United States
in AWS is in North Virginia ( us-east-1 region), while in GCP, it is in South Carolina (us-east1
region). We can see a map with all cloud regions in AWS’ or on GCP’s website [26, 10].
The price of a VM type in each cloud provider varies among different cloud regions. For
example, in April 2022, the GCP’s VM type e2-standard-4, with 4 vCPUs and 16 GB of RAM,
costed $0.13402 in Iowa (us-central1 region) and $0.16098 in Salt Lake City (us-west3 region) 3.
While the AWS’ VM type t2.xlarge, with the same configuration, costed $0.1856 in North Virgi-
nia (us-east-1 region) and $0.2208 in North Carolina (us-west-1 region).
Besides the VM allocation costs, there are two other costs to be considered : (i) the communica-
tion costs, since an FL application exchanges many messages during its execution, and (ii) the
storage systems costs, necessary to store the whole dataset. In each FL round, the server sends
all model weights to each client, receives them back after the training, and sends the aggregated
ones so that the clients can evaluate the model. In terms of size, the VGG16 model, used in our
previous work [3], has 132 million weights, which are float pointing variables using a total of
5.2 GB of memory. Thus, in each FL round, the server exchanges up to 15.6 GB in messages. In
AWS, the price is $0.09 per GB sent from AWS to the Internet in the first 10 TB/month. In GCP,
there are two different network tiers, called Standard and Premium Tier [12]. While the Pre-
mium Tier uses GCP’s high-speed internal network as much as possible, the Standard Tier uses
the Internet to deliver the exchanged data. In the Premium Tier, we pay $0.12 per GB sent from
GCP to any destination worldwide, except in China and Australia, in the first 1 TB/month,
after this first TB, we pay $0.11 per GB. In the Standard Tier, we pay $0.085 per GB sent from
GCP to any destination worldwide, except in China and Australia, in the first 10 TB/month.
Regarding the storage services, AWS offers a total of 11 storage services [25] and GCP offers
nine different storage services [8]. Each storage service focuses on different needs in a com-
pany’s workflow. In this work, we use the object storage service from each of the providers :
Amazon Simple Storage Service (Amazon S3) [24] and Cloud storage [6]. These services simi-
larly represent the objects, using a two-level organization [24, 6]. At the higher level, they use
buckets, structures similar to folders having a unique global name. These buckets help to or-
ganize the data of different users, identifying and billing them accordingly. S3 restricts each
bucket to a single region, and each account can associate up to 100 buckets with it. In Cloud

3. https ://cloud.google.com/compute/vm-instance-pricing#n1_predefined
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Storage, the user can configure the bucket availability to a single cloud region, in two close
regions (dual-region), or several regions spread in a larger area (multi-region). There is no limit
on the number of buckets per account in GCP, but there are limitations regarding the bucket’s
name and creation rate [7].
Objects are the lower level of these two storage services. They contain the user stored data
represented by a name and a unique key used to access the object 4, 5. Both services have an
upper limit to a single object size of 5TB [24, 7] and allow the user to create, change and, read
objects from a bucket using a single operation. However, if the user wants to rename or move
the object to another place, it takes at least two operations, downloading the object to a local
system and uploading it with the new name or to the new location.
The two cloud providers allow users to choose the privacy level for each object. By default,
AWS makes all objects stored in S3 private, allowing only access from the resource owner and
account administrator 6. If a user wants to let others see his/her data, he/she needs to grant
access to each object explicitly. On the other hand, GCP does not assume any privacy level
but requests the user to set the requested level of external access when uploading new files to
Cloud Storage 7.
AWS and GCP charge for storing the data and for each operation in it, and the price varies
among different regions. In Amazon S3, users pay $0.023 per GB to store their data in N. Vir-
ginia (us-east-1 region) and $0.005 per 1000 operations in this region while in N. Carolina (us-
west-1 region), users pay $0.026 per GB stored and $0.0055 per 1000 performed operations. In
Google Cloud Storage, users also pay $0.023 per GB to store their data in N. Virginia (us-east4
region) and $0.020 per GB in Iowa (us-central1 region). The price per operation is the same in
all regions of Cloud Storage, being $0.005 per 1000 operations.

3. Federated Learning for solving a Tumor-Infiltrating Lymphocytes Classification Problem

In this work, we have executed the FL approach proposed in [3] to a biomedical application,
which deals with a Tumor-Infiltrating Lymphocytes (TIL) classification problem, described in
[23], in different cloud scenarios. This application receives as input Whole-Slide Images (WSIs)
and presents TIL maps as results. These maps show the spatial distribution and the density of
TILs in each patient to help cancer treatment. There are two main phases in this application :
training and production. In the training phase, the application divides each WSI into patches
of smaller sizes, presents them to experts to classify as TIL-positive or TIL-negative, and uses
them as a training dataset for the CNN. In the production phase, new WSIs are divided into
patches and the CNN classifies these new patches into having or not having TILs. With the
TIL-positive patches, the application creates the TIL maps.
The FL approach focuses on the CNN training part and implements the VGG16 model [30]. The
CNN input size is 224×224, the patch dimension from the previous steps. We set the number of
output classes to two, positive if the patch contains a TIL or negative otherwise. The centralized
approach needs two separated datasets to train the CNN : one to train the model and another
to test it. In our FL approach, we divided the two datasets among all clients homogeneously.
Thus, each FL client accesses two separated and private datasets : one for training the local
model and another to test it.
The FL approach is composed of communication rounds which in turn are composed of 5 steps.

4. https ://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingObjects.html
5. https ://cloud.google.com/storage/docs/naming-objects
6. https ://aws.amazon.com/s3/security/?pg=ln&sec=be#Access_management_and_security
7. https ://cloud.google.com/storage/docs/access-control
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In the first step, the server sends the current model weights to all participating clients. After re-
ceiving the weights, each client trains for several epochs on the local training dataset and sends
the updates back to the server (step 2). Then, the server receives all updates, aggregates them,
and sends the final weights to the clients (step 3). Next, each client updates their weights, tests
the model with the testing dataset, and sends its evaluation metrics (e.g., accuracy and preci-
sion) to the server (step 4). Finally, the server aggregates the evaluation metrics of all clients to
present global metrics (step 5).

4. Experimental Results

Our experiments were conducted on the framework Flower, a FL framework proposed by Beu-
tel et al. [1] that focuses on the FL execution in real scenarios. The authors developed Flower
to support any ML framework underneath it (TensorFlow, PyTorch, or a custom one) and se-
veral client environments, with different operating systems or hardware settings. Moreover,
they implemented some FL algorithms, like FedAvg [19], FedProx [16], and Q-FedAvg [17],
and the communication layer between server and clients using the gRPC protocol [13], a high-
performance implementation of the Remote Procedure Call (RPC) protocol that provides com-
munication among several tasks with minimum overhead. Since Flower is open-sourced, it is
possible to modify the source code to add specific log messages or create other FL algorithms
within it. We used the Python 3.6 programming language and executed both server and clients
into different VMs of AWS and GCP. We deployed each task into a different VM to avoid unin-
tended data access from other clients and reinforce the privacy issues.
Regarding the application execution parameters, we executed the FL application with 4 clients
and 10 communication rounds using 5 training local epochs in each, which are the best exe-
cution parameters, as presented in [3]. Each client works on a dataset containing 948 training
patches and 522 test patches collected from the TCGA repository [20]. We added log messages
into the FL framework to get the time the server and clients send and receive each message.
From these log messages, we computed the FL synchronization time and the computation time
of each client. The FL synchronization time is the sum of three times per round : (1) the initial
sync time, (2) the aggregation sync time, and (3) the test sync time. The initial sync time is the
time between the server sending the first message with the current weights and the last client
receiving it. The aggregation sync time is the time between the first client sending the updated
weights back to the server and the last client receiving the final weights, which includes the
server aggregation in step 3. The test sync time is the time between the first client sending the
evaluation metrics and the server presenting the global metrics. The computation time of each
client is the sum of the training and the testing steps in each client, including the time to access
the dataset. We present here only the longest computation time.
Concerning the cloud environments, in both providers, each client executes in a VM with 8
vCPUs, 32GB of memory, and an Nvidia T4 Tensor Core GPU while the server in a VM with
4 vCPUs and 16GB of memory, as the server does not need a GPU. The cloud region, storage
service, type of VMs (client and server), VM price (client and server), and network costs are
summarized in Table 1 for the two cloud providers. We chose the Premium Network Tier of
GCP to use the high-speed internal network as much as possible.

4.1. Execution times and Financial Costs
Table 2 presents the averages of three executions in different scenarios, where the costs are
presented in $, and the time in hours, minutes and seconds. Our initial tests aimed at evaluating
the execution times and financial costs when the complete FL application was executed on a
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TABLE 1 – Cloud region, storage service, VM and cost for both client and server, and network
transfer costs in each cloud providers used in our experiments

Region Storage
Service

Client Server Network
Costs

($ per GB)VM
Cost

($ per hour) VM
Cost

($ per hour)

AWS
N. Virginia
(us-east-1)

Amazon
S3 g4dn.2xlarge 0.752 t2.xlarge 0.1856 0.090

GCP
Iowa

(us-central1)
Cloud

Storage n1-standard-8 0.730 e2-standard-4 0.13402 0.120

unique cloud provider. As can be seen in S2, GCP presented better results than the AWS ones
(seen in S1). Even if more expensive than the standard one, the choice of the Premium network
showed to be a good option when compared with the AWS results. The second set of tests
evaluated two cases : (i) the server, three clients, and their corresponding data sets on GCP, and
one client and the corresponding data set on AWS, case S3 ; and (ii) all clients and the server on
GCP, but one data set allocated on AWS, case S4. This last test showed that the allocation of the
client in the same cloud provider of the dataset is the best option, in this case, even considering
that GCP has presented better results than AWS in the other cases. Finally, we considered two
scenarios where two datasets and two clients were allocated to each cloud provider. In the first
case, the server was allocated on AWS, and in the second case on GCP. We observed similar
execution times in the two cases, despite the use of the Premium Tier of GCP, with a 12%
increase in the total costs using the server in GCP.

TABLE 2 – Average times and costs of 4 scenarios : S1- all FL application on AWS, S2- all FL
application on GCP, S3 - 3 clients and 3 data sets on GCP, 1 client and 1 data set on AWS, S4- 4
clients and 3 data sets on GCP and one data set on AWS.

Scenarios Total Total Syncronization Message exchange Computing VM
time cost $ time cost $ time cost $

S1 (AWS) 1 :28 :32 10.51 0 :34 :47 5.80 1 :17 :55 4.71
S2 (GCP) 0 :36 :54 9.61 0 :04 :35 7.73 0 :29 :44 1.88

S3 (3 GCP,1 AWS) 1 :25 :22 12.04 0 :56 :58 7.57 1 :15 :42 4.47
S4 (4 GCP,1 DS AWS) 1 :48 :21 13.25 1 :18 :26 7.73 1 :45 :20 5.52

5. Conclusion

This paper presented a preliminary analysis of FL executions in several scenarios of clients
and server allocation on GCP and AWS clouds. We could observe different costs and execution
times when using those providers, even using similar infrastructures. These experiments sho-
wed that the allocation problem of clients and servers is not trivial and that the financial costs
and execution times can vary in accordance with the used infrastructure. Moreover, it is not
worth using the best VMs or network in one cloud provider if we have a dataset allocated in
another one with worse performance, since the bigger access time of the slowest cloud provi-
der will dominate the execution time. In future work, we intend to model that problem using
optimization tools in order to obtain, given the characteristics and location of the datasets, and
cloud providers’ costs and infrastructure performance, the best clients and server allocation
with the aim of reducing execution times and/or financial costs.
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