
Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

IO-SETS : Simple and efficient approaches for I/O
bandwidth management
Francieli Boito, Guillaume Pallez, Luan Teylo, and Nicolas Vidal∗

Univ. Bordeaux, CNRS, Bordeaux INP, INRIA, LaBRI, UMR 5800, F-33400 Talence, France
{francieli.zanon-boito,guillaume.pallez, luan.gouveia-lima, nicolas.vidal}@inria.fr

Résumé
One of the main performance issues faced by high-performance computing platforms is the
congestion caused by concurrent I/O from applications. When this happens, the platform’s
overall performance and utilization are harmed. From the extensive work in this field, I/O
scheduling is the essential solution to this problem. The main drawback of current techniques
is the amount of information needed about applications, which compromises their applicabi-
lity. In this paper, we propose a novel method for I/O management, IO-SETS. We present its
potential through a scheduling heuristic called SET-10, which requires minimum information
and can be easily implemented.

Mots-clés : HPC; Parallel I/O; I/O scheduling ; Resource management

1. Introduction

As high-performance applications increasingly rely on data, the stress put on the I/O system
has been one of the key bottlenecks of supercomputers. Indeed, processing speed has increased
at a much faster pace than parallel file system (PFS) bandwidth. For example, the first super-
computer in the Top500 list [1] of November 1999 was ASCI Red, with peak performance of
3.2 TFlops and 1 GB/s of PFS bandwidth [9]. Twenty years later, in November 2019, the fastest
machine was Summit, with 200.8 PFlops (over 62, 000× faster) and a PFS capable of 2.5 TB/s
(2, 500× faster) [16]. The I/O bottleneck becomes a bigger issue when multiple applications
access the I/O infrastructure simultaneously. Congestion delays their execution, which means
they hold compute resources for longer, hurting the utilization of the platform. Moreover, per-
formance variability increases, since the application’s execution time depends not only on what
it does but on the current state of the machine.
In this context, solutions were proposed to try to manage the accesses to the shared I/O system.
The main way of doing so, and the topic of this work, is I/O scheduling [12, 15, 7, 8, 21] : it
consists in deciding algorithmically which applications get priority in this access.
In the majority of the I/O scheduling approaches in the related literature, the I/O operations
are performed exclusively (i.e. one application at a time), or semi-exclusively when applications
cannot use all the available bandwidth by themselves (i.e. some applications run concurrently
using as much bandwidth as they can). An alternative method is to use fair-sharing : the band-
width is shared equally by all applications in a best-effort fashion. With fair-sharing, when two
applications perform I/O concurrently, each one takes twice the time it would take by itself.

*. The authors are presented in alphabetical order.



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

We propose a novel approach that is built on the intuition that both exclusive and fair-sharing
have benefits. With this respect, we design a two-pronged I/O management approach for HPC
systems : first, applications are sorted into sets. If applications from the same set try to perform
I/O concurrently, that is done in an exclusive fashion (one at a time). Nonetheless, applications
from different sets can do I/O accesses at the same time, and in this case they share the available
bandwidth. The main contributions of this paper are the following :

— a novel method for I/O management in HPC systems ;
— an instantiation of this method with very simple heuristics that require little information

about applications ;
The rest of this paper is organized as follows. In Section 2, we detail the problem we studied
and our platform and application models, so that we can present our method and studied
heuristics in Section 3. Results are presented in Section 4. The paper closes with related work
in Section 5 and final remarks in Section 6.

2. I/O scheduling in HPC systems

In this work, we assume that we have a parallel platform, with a separated I/O infrastructure
that is shared by all nodes and that provides a total bandwidth B. There are many ways to
share the I/O bandwidth between concurrent I/O accesses [7]. One of the novel ideas that we
develop here is to manage I/O bandwidth using a priority-based approach, which was inspired by
a network protocol [20]. It consists in assigning priorities to I/O accesses. The idea is that,
when an application (or job, in this paper we use both terms without distinction) performs an
I/O phase by itself, it can use the full bandwidth of the system. However, when there are k
concurrent requests for I/O, with respective priorities p1, p2, . . . , pk, then for i ∈ {1, . . . , k}, the
ith request is allocated a share xi of the total bandwidth such that :

xi =
pi∑k
j=1 pj

(1)

We consider the execution of workloads composed of N jobs. HPC applications have been
observed to alternate between compute and I/O phases [7, 11]. Thus, for j ≤ N, job Jj consists
of nj non-overlapping iterations. For i ≤ nj, iteration i is composed of a computing phase of
length t(i)cpu followed by an I/O phase of length t(i)io

2. These lengths (in time units) correspond
to when the job is run in isolation on the platform (i.e. when there is no interference from other
jobs). We consider here that an I/O operation that would take tio units of time in isolation takes
tio/x units of time when using only a share x of the I/O bandwidth.
The precise I/O profile of an application, i.e. all its I/O accesses along with their volumes, start
and finish time, can be extremely hard to predict. Obtaining this would involve a detailed I/O
profiler that would impose a heavy overhead and generate a large amount of data, and still
the profile would suffer from inaccuracy. I/O profilers used in practice focus on average or
cumulative data. For instance, Darshan [17] is able to measure the total volume of I/O by an
application. Therefore, we focus on average parameters.
The first parameter is the characteristic time,witer, of an application with n iterations. This para-
meter can be seen as the average time between the beginning of two consecutive I/O phases :

witer
def
=

∑
i≤n t

(i)
cpu + t

(i)
io

n
(2)

2. For simplicity, in the following and if there is no ambiguity, we relax some of the indexes and use n for the
number of iterations, and tcpu and tio for the length of a compute or I/O phase



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

We also define a job’s average portion of time spent on I/O. The I/O ratio of a job is : αio =∑
i≤n t

(i)
io∑

i≤n t
(i)
cpu+t

(i)
io

. Using this, we can define the average I/O stress of the platform withN applications

at a given time :

ω =
∑
j≤N

α
(j)
io (3)

The intuition behind this value is that it corresponds roughly to the expected average occupa-
tion of the I/O bandwidth. We can make the following important remarks :

— These average values do not depend on the number of used nodes or their performance.
In practice, an application that runs on one node of 1 GFlops for 20 minutes and per-
forms 20 iterations has the same witer value (1 minute) than another that runs on 2000
nodes with at 2 TFlops for 120minutes and performs 120 iterations.

— The characteristic time and I/O ratio as defined above are average values that we expect
could be evaluated easily, or approximated from previous runs. Due to being averages,
they are more robust to variability than individual phases (Ergodic Theorem).

3. IO-SETS : a novel I/O management method for HPC systems

In this work we propose the IO-SETS method, which allows exclusive access for some appli-
cations, and (not fair) bandwidth sharing for others. Our proposition is a set-based approach,
described below.

— when an application wants to do I/O, it is assigned to a set Si ∈ {S0, S1, . . .}.
— Each set Si is allocated a bandwidth priority pi.
— At any time, only one application per set is allowed to do I/O (exclusive access within

sets). We use the first-come-first-served scheduling strategy within a set (i.e. we pick the
application that requested it the earliest).

— If applications from multiple sets request I/O, they are allowed to proceed and their
share of the bandwidth is computed using the sets’ priorities and Equation (1).

Proposing a heuristic in the IO-SETS method consists therefore of answering two important
questions : (i) how do we choose the set in which an application is allocated, and (ii) how do
we define the priority of a set. We can illustrate the instantiation of the IO-SETS method by
using it to represent the two discussed reference strategies.
EXCLUSIVE-FCFS : for this heuristic, all applications have exclusive access and are scheduled
in a first-come-first-served fashion. This is the case where there is a single set S1 with any
priority (for instance p1 = 1). All applications are scheduled in the set S1.
FAIR-SHARE : in this heuristic, the bandwidth is shared equally among all applications re-
questing I/O access. This can be modeled by the case where there is one set by application
(S0, . . . , Sk), all with the same priority pi = 1. Application id is scheduled in set Sid.

3.1. SET-10 algorithm
When two jobs have the same characteristic time, it seems more efficient to provide them with
exclusive I/O access so that they can synchronize their phases. In this case, one of them would
pay once a delay equal to the length of the other’s I/O phase, but then for the remaining ite-
rations, neither of them would be delayed. However, exclusive access does not bring benefits
when the applications’ characteristic times are very different. Based on this observation, we
propose the SET-10 heuristic, which builds the sets depending on witer.



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Given an application Aid, with a characteristic time wid
iter, then the mapping allocation is π :

π : Aid 7→ Sblog
10

wid
itere

(4)

where bxe defines the nearest integer value of x.
To define priorities for the sets, we start with the following observation : if two applications
start performing I/O at the same time and share the bandwidth equally, the one with the smal-
lest I/O volume finishes first. Now if we increase the bandwidth of the smallest, it will finish
earlier, but the largest one will not be delayed. Based on this, we want to provide higher band-
width to the sets with the smallest I/O accesses. Intuitively, if the characteristic timewiter are of
different orders of magnitude, we assume that so are the I/O accesses. An advantage of using
witer instead of the I/O volume is that it is easy to obtain, as previously discussed. Hence we
define the priority pi of set Si (which corresponds to jobs such that i = blog10w

id
itere) :

pi = 10
−i (5)

We define SET-10 the strategy in the IO-SETS method consisting of :
— The list of sets with their priorities {. . . , (S−1, 10), (S0, 1), (S1, 0.1), (S2, 0.01), . . .} (where

the priorities are computed with Equation (5)) ;
— The π function that maps jobs to sets using Equation (4).

4. Evaluation and Results

The evaluation in this paper represents the first exploratory work to show the importance of
the IO-SETS method. For that, we use Simgrid v3.30 [4], an open-source simulator of distribu-
ted environments that also simulates I/O operations [13]. We chose to use simulation because
we wanted to test many scenarios, to extensively assess our method’s strengths and limitations
(the extended version of the paper comprises tests with hundreds of different workloads). Mo-
reover, test platforms are somewhat limited in size, but deploying I/O scheduling strategies
in a production system (just to test them) is complex and usually not allowed. All code used
for our evaluation, the details of implementation, and the extended version of the paper are
available and documented at https://gitlab.com/u693/iosets.
In our experiments all applications start at the beginning of the simulation. It means that the
early and final stages are not representative in terms of arriving I/O requests. To avoid such
artifacts, we do our measurements within a time frame [Tbegin, Tend] with Tbegin > 0 and Tend <
h. Specifically, with a horizon h = 20, 000s, we select : Tbegin = 1, 000s and Tend = 9, 000s. That
ensures that it starts after a possible de-synchronization of the different applications and stops
before any application finishes. Additionally, for each task Jj, we define the effective completed
work ej = e

cpu
j + eioj as the sum of the lengths of all compute and I/O phases executed by this

task within the interval. We create 200 workloads each with N = 60 parallel applications, and
we consider a saturated system, with an average I/O stressω =0.80 (Equation 3).
We considered two metrics : i) the system Utilization (Equation 6), i.e., the proportion of
time loss due to I/O congestion ; and ii) the application Stretch (Equation 7), i.e., how long
does it take for a user to get a result. We aim to show that IO-SETS is indeed a relevant me-
thod when compared to the reference strategies EXCLUSIVE-FCFS and FAIR-SHARE. In order
to focus on the importance of the use of sets in the IO-SETS method, we design a collection of
applications that clearly belong to different groups of the heuristic SET-10. By doing that, we
temporarily put aside the question of designing an efficient heuristic for IO-SETS.

https://gitlab.com/u693/iosets


Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Utilization =

∑
j

e
cpu
j

N.(Tend − Tbegin)
(6)

Stretch = max
j

Tend − Tbegin
ej

(7)

As discussed in Section 3, a job is fully described by its number of iterations n, and compute
and I/O phases’ length. In order to generate each job, we proceed as detailed below.

1. We decide on a characteristic time witer for the job. In practice, it is drawn from the
normal distribution N (µ, σ), truncated so that we consider only positive values. µ and
σ are selected on an experiment basis.

2. The number of iterations of the job is n = h
witer

.

3. α(j)
io is defined as follows : for each application, we draw a value αj uniformly at random

in U [0, 1], then we set αio(j) =
ω∑

k≤N αk
· αj to guarantee an I/O Load ofω.

αio allows us to define the average values tcpu and tio : tcpu = (1−αio) ·witer and tio = αio ·witer.

0 5 10 15 20 25 30 35 40
H

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

U
ti

liz
at

io
n

FairShare
Exclusive-FCFS
Set-10

(a) Machine utilization

0 5 10 15 20 25 30 35 40
H

1.20

1.40

1.60

1.80

2.00

St
re

tc
h

FairShare
Exclusive-FCFS
Set-10

(b) Maximum stretch

FIGURE 1 – Comparison of the policies for workloads with sets of different sizes. All 200 results
obtained with each policy are presented. The y-axes are different and do not start at 0.

In Section 2, we explained the intuition that jobs should be grouped based on their characteristic
time (witer). Therefore, we define three different job profiles (i.e. values for µ and σ) :

— nH jobs with characteristic time witer ∼ N (10, 1), also called high-frequency jobs in the
following (the mean duration of an iteration is 10s) ;

— nM medium-frequency jobs with witer ∼ N (100, 10) ;
— nL low-frequency jobs with witer ∼ N (1000, 100) ;

We setnH+nM+nL = 60, and specifically we study the impact of the algorithms whennM = 20,
nH ∈ {0, . . . , 40}, and nL = 40− nH.
Utilization is presented in Figure 1a. The FAIR-SHARE and SET-10 strategies have a high
and stable platform usage, the latter better by up to 4.4% when there are few high-frequency
jobs. This difference disappears when nH increases. EXCLUSIVE-FCFS has rather poor results
compared to the other heuristics, with a higher utilization when I/O phases are mostly large.
Figure 1b presents the Stretch objective for each workload. We can observe the important
gains provided by SET-10, a 15.3% improvement over FAIR-SHARE, especially when there are
mostly low-frequency jobs (larger I/O phases). This difference disappears asnH increases. Here
again, EXCLUSIVE-FCFS has the worst results in all cases, confirming its expected shortco-
mings. Interestingly, the Utilization is not correlated to the Stretch : indeed, in an exclu-
sive scenario, one of the high-frequency jobs can be penalized many times (which increases its
Stretch), without hurting the Utilization significantly.



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

When there are diverse job profiles, EXCLUSIVE-FCFS is not a good strategy for scheduling
I/O. While it is important to share the bandwidth, keeping some exclusivity has a positive
impact on performance, showing the importance of the IO-SETS method.

5. Related Work

In this paper, we proposed a method for managing applications’ accesses to the shared pa-
rallel file system in an HPC platform. Other efforts were put into scheduling I/O operations
aiming at mitigating interference. Gainaru et al. [7] and Zhou et al. [22] schedule applications’
operations at the I/O node level. In a more recent contribution, Gainaru et al. [8] propose a
pattern-based schedule relying on the periodic I/O behavior. Dorier et al. [5] analyze the be-
nefits of either delaying or interrupting an application when it is interfering with another one.
ASCAR [14] uses controllers on storage clients to detect and reduce congestion using traffic
rules. The scheduler AIS [15] identifies offline the I/O characteristics of the application and
uses this information to avoid conflicts by issuing I/O aware scheduling recommendations.
Alves and al. [2], Snyder and al. [18] and Dorier and al. [6] use different models to predict and
avoid I/O interference. Our work is motivated by the observation that both exclusive and sha-
red access to the bandwidth have advantages, as observed by Jeannot et al. [12]. To the best of
our knowledge, ours is the first work to propose classifying applications into sets and using
that for managing the bandwidth.
Others have improved the batch scheduler to consider I/O as one of the resources to arbitrate.
Grandl et al. [10] and Tan et al. [19] enrich theoretical scheduling problems with additional
dimensions such as I/O requirements. Bleuse et al. [3] attempt to schedule applications reques-
ting both compute and I/O nodes. In their model, Herbein et al. [11] consider that jobs perform
I/O proportionally to the number of nodes they need. They show that considering I/O helps
reducing performance variability. Our approach is complimentary to those, because we focus
on the situation where there already is a set of applications running and requesting I/O.

6. Conclusion

In this work we have introduced a novel method for I/O management in HPC systems : IO-
SETS, intended to be easy to implement and light in overhead. This method consists in a smooth
combination of exclusive and non-exclusive bandwidth sharing. We have proposed the SET-
10 algorithm, based on this method, where jobs are categorized depending on the order of
magnitude of their characteristic times. The latter is an average value that corresponds to the
mean time between two consecutive I/O phases of an application. We shown the importance
of IO-SETS, and then the excellent performance of the SET-10 algorithm.
We believe that the results from this paper open a wide range of avenues for I/O management.
From a theoretical standpoint, optimal set mapping and bandwidth partitioning algorithms
can be investigated. From a practical point of view, the implementation of IO-SETS will have
to adapt to real applications that have more complex I/O behaviors that change over time. An
important direction that we will consider is that jobs can change sets at each I/O phase.
For research on I/O monitoring tools, our results indicate that an average behavior may be
enough information to obtain, and also cheaper. Finally, we believe our method could be suc-
cessful in other parts of the I/O stack, for instance to manage the access to shared burst buffers.

Acknowledgments

Experiments presented in this paper were carried out using the PlaFRIM experimental testbed, supported by



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine (see
https ://www.plafrim.fr). This work was supported in part by the French National Research Agency (ANR) in
the frame of DASH (ANR-17- CE25- 0004), by the Project Région Nouvelle Aquitaine 2018-1R50119 “HPC scalable
ecosystem" and by the “Adaptive multitier intelligent data manager for Exascale (ADMIRE)” project, funded by the
European Union’s Horizon 2020 JTI-EuroHPC Research and Innovation Programme (grant 956748).

Bibliographie

1. Top500. – https ://www.top500.org/.
2. Alves (M. M.) et de Assumpçao Drummond (L. M.). – "A multivariate and quantitative mo-

del for predicting cross-application interference in virtual environments". Journal of Systems
and Software, vol. 128, 2017, pp. 150 – 163.

3. Bleuse (R.), Dogeas (K.), Lucarelli (G.), Mounié (G.) et Trystram (D.). – Interference-aware
scheduling using geometric constraints. – In European Conference on Parallel Processing, pp.
205–217. Springer, 2018.

4. Casanova (H.), Giersch (A.), Legrand (A.), Quinson (M.) et Suter (F.). – Versatile, scalable,
and accurate simulation of distributed applications and platforms. Journal of Parallel and
Distributed Computing, vol. 74, n10, 2014, pp. 2899–2917.

5. Dorier (M.), Antoniu (G.), Ross (R.), Kimpe (D.) et Ibrahim (S.). – CALCioM : Mitigating
I/O interference in HPC systems through cross-application coordination. – In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, pp. 155–164. IEEE, 2014.

6. Dorier (M.), Ibrahim (S.), Antoniu (G.) et Ross (R.). – Using formal grammars to predict
I/O behaviors in HPC : The omnisc’io approach. IEEE Transactions on Parallel and Distributed
Systems, vol. 27, n8, Aug 2016, pp. 2435–2449.

7. Gainaru (A.), Aupy (G.), Benoit (A.), Cappello (F.), Robert (Y.) et Snir (M.). – Scheduling
the I/O of HPC applications under congestion. – In 2015 IEEE International Parallel and
Distributed Processing Symposium, pp. 1013–1022. IEEE, 2015.

8. Gainaru (A.), Le Fèvre (V.) et Pallez (G.). – I/O scheduling strategy for periodic applica-
tions. ACM Transactions on Parallel Computing, 2019.

9. Garg (S.). – Tflops pfs : Architecture and design of a highly efficient parallel file system. –
In SC ’98 : Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pp. 2–2, 1998.

10. Grandl (R.), Ananthanarayanan (G.), Kandula (S.), Rao (S.) et Akella (A.). – Multi-resource
packing for cluster schedulers. SIGCOMM Comput. Commun. Rev., vol. 44, n4, août 2014, pp.
455–466.

11. Herbein (S.), Ahn (D. H.), Lipari (D.), Scogland (T. R.), Stearman (M.), Grondona (M.), Gar-
lick (J.), Springmeyer (B.) et Taufer (M.). – Scalable I/O-aware job scheduling for burst
buffer enabled hpc clusters. – In Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, pp. 69–80, 2016.

12. Jeannot (E.), Pallez (G.) et Vidal (N.). – Scheduling periodic I/O access with bi-colored
chains : models and algorithms. Journal of Scheduling, vol. 24, n5, 2021, pp. 469–481.

13. Lebre (A.), Legrand (A.), Suter (F.) et Veyre (P.). – Adding storage simulation capacities
to the simgrid toolkit : Concepts, models, and api. – In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 251–260. IEEE, 2015.

14. Li (Y.), Lu (X.), Miller (E. L.) et Long (D. D. E.). – ASCAR : Automating contention mana-
gement for high-performance storage systems. – In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–16, May 2015.

15. Liu (Y.), Gunasekaran (R.), Ma (X.) et Vazhkudai (S. S.). – Server-Side Log Data Analytics for
I/O Workload Characterization and Coordination on Large Shared Storage Systems. – In



Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

SC ’16 : Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 819–829, Nov 2016.

16. Oral (S.), Vazhkudai (S. S.), Wang (F.), Zimmer (C.), Brumgard (C.), Hanley (J.), Marko-
manolis (G.), Miller (R.), Leverman (D.), Atchley (S.) et Larrea (V. V.). – End-to-end I/O
portfolio for the summit supercomputing ecosystem. – In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’19, SC ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

17. Snyder (S.), Carns (P.), Harms (K.), Ross (R.), Lockwood (G. K.) et Wright (N. J.). – Modular
HPC I/O characterization with darshan. – In 2016 5th workshop on extreme-scale programming
tools (ESPT), pp. 9–17. IEEE, 2016.

18. Snyder (S.), Carns (P.), Latham (R.), Mubarak (M.), Ross (R.), Carothers (C.), Behzad (B.),
Luu (H. V. T.), Byna (S.) et Prabhat. – Techniques for modeling large-scale HPC I/O work-
loads. – In Proceedings of the 6th International Workshop on Performance Modeling, Benchmar-
king, and Simulation of High Performance Computing Systems, PMBS ’15, PMBS ’15, pp. 5 :1–
5 :11, New York, NY, USA, 2015. ACM.

19. Tran (T. T.), Padmanabhan (M.), Zhang (P. Y.), Li (H.), Down (D. G.) et Beck (J. C.). – Multi-
stage resource-aware scheduling for data centers with heterogeneous servers. Journal of
Scheduling, vol. 21, n2, avril 2018, pp. 251–267.

20. Velho (P.), Schnorr (L. M.), Casanova (H.) et Legrand (A.). – On the validity of flow-level tcp
network models for grid and cloud simulations. ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 23, n4, 2013, pp. 1–26.

21. Zhang (X.), Davis (K.) et Jiang (S.). – IOrchestrator : Improving the performance of
multi-node I/O systems via inter-server coordination. – In SC’10 : Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–11. IEEE, 2010.

22. Zhou (Z.), Yang (X.), Zhao (D.), Rich (P.), Tang (W.), Wang (J.) et Lan (Z.). – I/O-aware
batch scheduling for petascale computing systems. – In 2015 IEEE International Conference
on Cluster Computing, pp. 254–263. IEEE, 2015.


	Introduction
	I/O scheduling in HPC systems
	IO-Sets: a novel I/O management method for HPC systems
	Set-10 algorithm

	Evaluation and Results
	Related Work
	Conclusion

