
Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Towards a correct, high-performance database backend
Saalik Hatia(1), Annette Bieniusa(2), Carla Ferreira(3), Gustavo Petri(4), Marc Shapiro(1)

(1) LIP6–Sorbonne-Université & Inria, Paris, France
(2) TU Kaiserslautern, Germany
(3) Universidade NOVA de Lisboa, Portugal
(4) ARM, Cambridge, United Kingdom

Résumé
This paper describes the design and implementation of a full-featured, high-performance geo-
distributed database backend that is correct by construction. We develop hand-in-hand an
operational semantics, key invariants, and a reference implementation. Our baseline is a sim-
plistic backend that supports concurrent transactions storing and retrieving versions in an un-
bounded memory. Later steps add a single feature, such as persistence, journaling, caching,
checkpointing, or sharding, to both the model and the implementation. We first prove (in
Coq) that the baseline model satisfies its invariants and show (by testing) that the reference im-
plementation satisfies the model. For each additional feature, we prove a simulation relation
between the base and extended model, and similarly for the reference implementation. This
paper focuses on the reference implementation: its relation between the model, and how we
instrument the code with asserts and on the litmus tests.

Mots-clés : système réparti, base de données géo-distribuée, vérification formelle, test

1. Introduction

Modern online applications use a distributed database management system (DDBMS), whose
storage backend provides users with available and consistent data. The purpose of a backend
is conceptually simple: to store and retrieve shared data. However, for performance and fault-
tolerance reasons, the internals of a typical database backend are very complex, with many
moving parts that interact in hard-to-understand ways. Existing backends are designed in a
manual and ad-hoc manner; inevitably, they have bugs that impact the consistency and in-
tegrity of data.
Our research claim is that, for a complex system such as a database backend, following a formal
model helps the developer avoid bugs, and is not in conflict with good performance. In this
work, we aim to to build a database backend that is correct by design, while including some
important optimisations (e.g., caching) and properties (e.g., fault tolerance).
Formalising a backend that provide users with fast read and writes, data safety and geo-
replication is hard. Any attempt to verify at once some monolithic specification that includes all
the interesting properties is probably doomed to failure. Instead, we propose the an incremen-
tal approach, decomposing the system into a set of small, orthogonal modules and features.
Our starting baseline is a bare-bones backend, restricted to its simplest function, i.e., transac-
tions reading and writing data versions. We formalise its operational semantics and specify its



Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

invariants. We prove (in Coq) that the semantics satisfies the invariants. We also provide a ref-
erence implementation (hand-written in Java), and use litmus test cases to check that it follows
the semantics and does not violate the invariants.
Each design step adds a single feature, e.g., a cache or logging, with its associated operational
semantics and invariants. We use simulation (or bisimulation) to show that the formal model
is equivalent without and with the feature, modulo the added constraints. We take a similar
approach with the reference implementation. Furthermore, we compare performance without
and with the feature.
Our ultimate aim is to show that the final design, including all the features, is both correct (by
simulation of the baseline) and has comparable performance to ad-hoc database backends with
similar features.
This paper gives some background on the formal model and focuses on the system part, i.e.,
how the reference implementation follows the model, how we instrument the invariants, and
how we conduct the testing.

2. Background

2.1. Transactions and timestamps
A client of the backend executes transactions. Classically, a transaction is a sequence of reads
and updates, bounded by a begin and an end. The transaction either aborts with no effects; or
it commits and all its commits become visible atomically. Formally, the choice between abort
and commit is non-deterministic (in practice it depends on the application’s invariants and on
external events, such as sufficient resources being available).
We formalise the mutual ordering of transactions with abstract timestamps. Committing a trans-
action i assigns it a commit timestamp Cti; for atomicity, its updates are all labelled with this same
timestamp. Conversely, a transaction j has a snapshot timestamp (or dependency timestamp) Dtj.
Transaction i precedes transaction j if Cti ≤ Dtj. Transaction j depends on all transactions i such
i precedes j, meaning that a read that j performs includes all the updates with a label less or
equal to Dtj. The set of such preceding updates is called the snapshot of transaction j.
For space reasons, this paper considers a single model, Transactional Causal Plus Consis-
tency (TCC+), i.e., causal consistency with transactions and convergence [1, 4]. Under TCC+,
timestamps form a partial order (consistent with happened-before), and a snapshot must be
a causally-consistent cut. However, our formalisation supports different transaction models
(e.g., serialisable or snapshot-isolation), which differ only by timestamp ordering being partial
or total, and by constraints on beginning and committing a transaction.
A transaction t has the following attributes:

• τt: unique transaction identifier.
• Dtt: dependency timestamp.
• εt: effect map, records the updates made by the transaction. A write updates the effect

map.
• Rt: read set, records the objects read by the transaction. A Read updates the read set.
• Ctt: commit timestamp, assigned if and when the transaction commits.
• Statet: status, either not_started, live or terminated.

In what follows, we omit the subscript if it is obvious from the context.



Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Precondition Postcondition
startTransaction() State = null State = live

model-specific
update(key,u) State = live ε ′ = ε ∪ {(key,u)}

read(key) State = live R ′ = R ∪ {key}→ r r = lookup(ε, key,Store,Dt)
commit() State = live State = terminated

model-specific Store ′ = Store ∪ ε
Dt < Ct

abort() State = live State = terminated

Table 1: Unbounded-Memory Version store: pre- and post-conditions

2.2. Object-versions
For generality, we consider that each update (or, more precisely, the associated commit) creates
a new version of the updated object.1 As mentioned above, each such version is labelled with
the commit timestamp of the corresponding transaction. A particular version of a particular
object maps the pair (key,Ct), where key identifies the object, to the corresponding value, which
for the purposes of this paper is an untyped “blob.” In the above, key is the unique identifier
or key of the object, and Ct is the commit timestamp of the transaction that writes this object-
version.

3. Unbounded Version Store

We start with an intuitive simple in-memory key-value store. The implementation uses the
Java MultiMap<Key, Value> for storing the object versions. Following Section 2.1, a Java
Transaction object has attributes transactionID, EffectMap, ReadSet, etc. In addition, to
speed up processing, we explicitly store the dependency graph of transactions.
The code is instrumented with Google Guava’s checkArgument library[2] to perform assertions,
both to check arguments, and to make sure that the invariants specified in the model are not
violated, as we explain next, and as summarised in Table 1.
For instance, an assert checks that the commit timestamp of a committed transaction is greater
than its dependency timestamp. To ensure that a client runs a sequence of well-formed trans-
actions, asserts check that every transactional operation (read, write, commit or abort requests)
takes place within a live transaction, and that only one transaction is live at a time.
Creating a transaction checks that its dependency timestampDt is valid, by calling a procedure
that is specific to the consistency model. For instance, in the TCC+ model, it checks that Dt
forms a causally-consistent snapshot.
To update a key, the system adds the update to the effect buffer associated with the transaction.2

Reading a key retrieves the key’s value. There are two cases. If the transaction has previously
updated the key, it returns the value in the effect buffer. Otherwise, it fetches the value corre-
sponding to the transaction’s snapshot from the store, looking up the most recent version of
the key in the store whose timestamp is less or equal to Dt. If the snapshot contains concurrent
object-versions (i.e., written by concurrent commits), they are merged [3]. If there is no pre-
1 This is standard for databases that use Multi-Version Concurrency Control (MVCC), but our model does not
mandate MVCC in the implementation.
2 To simplify the notation, our postcondition assumes a key is updated only once per transaction.



Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

ceding update in the store, it returns a default value. Finally, the system adds the key to the
read-set R of the transaction.
When the client terminates the transaction, the system checks whether the effects of ε are valid
according to the consistency model (under TCC+, this is always the case). The transaction
commits only if this is true; this sets a commit timestamp, and moves the updates from the
effect buffer into the store, tagged by the tagged by the transaction’s commit timestamp. If not,
the transaction aborts, by simply moving to the terminated state. A transaction may also abort
non-deterministically.

4. Bounded-Memory Version Store

Our next step will be to impose a bound on the size of the store.
All invariants from the Unbounded memory are valid in this system. We create a global value
called Mlimit that contains the size limit for the Store. We also keep track of current memory
utilization represented by Mused. To simplify our model we only consider the size of the Store,
running transactions does not affect the invariant. Based on these two variables we introduce
a new system invariant:

• Mused ≤Mlimit

Every time a transaction commits Mused is updated to ensure that the size of the Store does not
grow beyond the limit set by the system.
If the threshold is reached, the system has two possibilities: either to abort future transactions,
or to delay their commitment, until Mused decreases.
For Mused to decreases the system needs to perform an eviction of Objet-Versions. For an evic-
tion to be safe, the system must ensure that every running transaction’s snapshot returns the
same Object-Version for every key before and after any eviction. To uphold the new system
invariants, we keep track of all the dependencies of running transactions called RunningTr but
also all the commit timestamps of finished transactions CommitTr.
We then introduce a new timestamp called Minimum Dependency MinDt. MinDt represents
the oldest snapshot any running transaction is reading from. When a transaction τ commits or
aborts, it is removed from RunningTr. If Dt = MinDt and no other transaction is reading from
Dt the system advances MinDt to the next oldest snapshot used in RunningTr.
Eviction of Object-Version is done through a Garbage Collection. The system performs a lookup
on every key that is part of the snapshot MinDt. Every Object-version in the Store that has a
commit timestamp that is lower than MinDt and cannot be returned by a lookup(key,Store,minDt)
is evicted.
If at the end of the Garbage Collection the memory used is still higher than all the running
transactions are aborted and we advance MinDt to allow additional garbage collection.

5. Testing

To simplify testing, every step of the implementation is built with the same client interface.
We start by executing a predetermined sequence of transactions and verify that the general
behavior of the backend is correct. Once this done we run randomized tests on both systems to
check if the general behavior remains correct outside predefined scenarios.
The next step is to check if our invariants are upheld by our implementation. Some invariants
are directly inlined in the different functions. For others like checking if every transactional



Compas’2022 : Parallélisme/ Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

operation takes place within a live transaction, we run each operation at least once outside a
live transaction and expect our system to crash.
We want to show in our testing methodology that the Unbounded Version Store simulates
the Bounded-Memory Version Store. The Bounded-Memory version has a constraint on the
minimum snapshot allowed to be used by the system. So we execute the same sequence of
transaction on both versions, where for every transaction the dependency snapshot is always
higher than minDt and expect to see the same results. Then we execute a second sequence
of transaction that has dependencies lower the minDt and show the differences between the
two traces. One execution should succeed where in the Bounded-Memory Version Store some
transaction should abort.
Finally, we plan on performing performance experiments to show that our design has compa-
rable performance to ad-hoc database backends.

6. Conclusion

We have written several steps of the operational semantics, we have implemented the first
partial versions of our design. Later we plan on adding the following features to the database:
persistency, Unbounded Journal, Bounded journal with checkpoints and finally a cache.
For each feature we will complete the operational semantics by adding the necessary invariants
for maintaining safety. Followed by a corresponding implementation matching our specifica-
tion. Through testing we show that our implementation simulates our operational semantics.
And that every step of the implementation simulate the following within the added constraints
added by the new feature. Finally, we will provide a translation of the model in Coq.

References

[1] Akkoorath (D. D.), Tomsic (A. Z.), Bravo (M.), Li (Z.), Crain (T.), Bieniusa (A.), Preguiça
(N.) et Shapiro (M.). – Cure: Strong semantics meets high availability and low latency. – In
Int. Conf. on Distributed Comp. Sys. (ICDCS), pp. 405–414, Nara, Japan, juin 2016.

[2] Google. – Guava.

[3] Shapiro (M.), Preguiça (N.), Baquero (C.) et Zawirski (M.). – Conflict-free replicated data
types. – In Défago (X.), Petit (F.) et Villain (V.) (édité par), Int. Symp. on Stabilization, Safety,
and Security of Dist. Sys. (SSS), Lecture Notes in Comp. Sc., volume 6976, pp. 386–400, Greno-
ble, France, octobre 2011. Springer-Verlag.

[4] Toumlilt (I.), Sutra (P.) et Shapiro (M.). – Highly-available and consistent group collabora-
tion at the edge with Colony. – In Int. Conf. on Middleware (MIDDLEWARE), p. ??, Québec,
Canada (online), décembre 2021. ACM/IFIP.


