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Résumé
In recent years, academics and industry have increased their efforts to find solutions to re-
duce greenhouse gas (GHG) due to its impact on climate change. Two approaches to reducing
these emissions are decreasing energy consumption and/or increasing the use of clean energy.
Data centers are one of the most expensive energy actors in Information and Communications
Technology (ICT). One way to provide clean energy to Data Centers is by using power from
renewable sources, such as solar and wind. However, renewable energy introduces several
uncertainties due to its intermittence. Dealing with these uncertainties demands different ap-
proaches at different levels of management. This work is part of the Datazero2 Project which
introduces a clean-by-design data center architecture using only renewable energy. Due to no
connection to the grid, the data center manager must handle power envelope constraints. This
article investigates some scheduling and power capping online heuristics in an attempt to iden-
tify the best algorithms to handle fluctuating power profiles without hindering job execution.
Then, it details experiments comparing the results of the heuristics. The results show that our
heuristic provides a well-balanced solution considering power and Quality of Service (QoS).
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1. Introduction

The information and Communications Technology (ICT) sector has a significant impact on the
global greenhouse gas (GHG), generating 2.1-3.9% of the global emissions [1, 8]. Despite energy
technology improvements, emissions of the sector have risen steadily. In addition, some ex-
perts warn that improvements in processor technologies could slow after 2025, creating an
even worst scenario [8]. Therefore, Internet providers can not overlook its carbon footprint by
just increasing the number of resources to deal with the predicted expansion of Internet usage
by 2023 [4]. One of the most crucial elements in providing Internet services is the large-scale
data centers [17]. Data centers are a notable power waste actor using around 1% of worldwide
electricity [17]. Hence, the IT community has started to investigate other power supply pos-
sibilities, such as renewable energy utilization [17]. Renewable energy employs self-renewing
resources, such as wind and sunlight, providing clean energy, but introducing uncertainties due
to weather conditions. Cloud providers, such as Google and Amazon insert grid connection as
a way to deal with renewable sources uncertainties [14]. As renewable energy becomes a solu-
tion to the data center’s carbon footprint reduction, several works deal with this topic in the



literature. Some works aim to maximize renewable energy source usage but use grid (brown)
energy to add reliability [11, 18]. This connection removes the power constraints since they
could use the energy from the grid when there is no renewable power available. Several works
deal with processor power capping to control energy costs [12, 10, 26, 19]. A renewable-only
data center has a global power constraint and must find the best server combination possible
to deal with it (e.g., how many servers are on at which speed). Few articles detail global power
constraints [25, 7]. However, they have limitations such as the need to profile jobs’ power and
execution time relationship, no power fluctuations, equal power distribution independently of
jobs state, or no QoS evaluation. Datazero2 Project [20] designed a data center operated only
by renewable sources without any link to the grid. This architecture introduces a global power
constraint since all the power usage must be lower than the power target (also named power
capping). The power comes from several elements, such as solar panels, wind turbines, batte-
ries, and hydrogen tanks. This article investigates scheduling and power capping heuristics to
identify the best algorithms to handle fluctuating power profiles without hindering job execu-
tion. Power capping heuristics change the machine state (on/off) or speed (using the Dynamic
Voltage-Frequency Scaling (DVFS) technique), aiming to meet the power available. Finally, it
also presents experiments to evaluate the algorithms’ performance with different workloads
and renewable power production. This paper is organized as follows : Section 2 presents the
model and algorithms. Section 3 explains the experimental setup. Section 4 analyzes the expe-
rimental results, and Section 5 concludes the article.

2. Model and algorithms

2.1. Model
Given a data center with S servers, each server s has an list of states Ds which has two values :
Fs,d means the flops per second of the server s at state d, and Ps,d symbolizes the power needed
to run the server s at state d at maximum load. This article considers a global power constraint
coming from an electrical module dealing with sources’ commitment. The power is a global
constraint defined as Pavai

t . A power profile consists of all values of Pavai
t , but the values are

revealed step by step. The model only knows the Pavai
t of the actual time step. Therefore, global

power usage of the data center (Ps,t is the power usage for the server s at time t) must be less
or equal to the power available, as demonstrated by Equation 1. Equation 2 defines the power
for each server (Ps,t) as the state with higher power usage. Ds,d,t is a boolean that indicates that
the server s is at state d at step t. The server configuration algorithms will decide the binary
variable Ds,d,t for each time step. The objective is to find the configuration with the highest
speed inside the power constraint, as presented in Equation 3. Besides the presented equations,
the server configuration also considers the transitions between running and sleeping, which
use energy and take time. During the transition, the server is unavailable to execute jobs, so
they do not increase the flops in Equation 3. The variable ls,d,t indicates how many seconds the
server s is in the state d at step t.

S∑
s=0

Ps,t ⩽ Pavai
t ,∀t (1)

Ps,t = max
∀d

(Ds,d,t × Ps,d),∀t, s (2)

maximize
T∑

t=0

S∑
s=0

D∑
d=0

Ds,d,t × Fs,d × ls,d,t (3)

With the server configuration plan defined (Ds,d,t), it is possible to choose the job scheduling.
Given J jobs, job j contains a walltime Wj, floating-point operations Flj, arrival date Arj, and
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parallel resources Plj. In fact, the scheduler does not know the floating-point operations Flj.
So, it must infer it using the execution time, for example. The execution time could also be
estimated by the walltime [23]. The scheduling finds the first possible moment after Arj to place
job j in Plj servers, meeting the constraints from Equations 4 and 5. Etj is the job’s execution
time, and Efj is the total flops executed. Equation 4 guarantees that the job will finish in less
time than the walltime defined by the user. Equation 5 indicates that the job will execute the
job’s flops entirely. Finally, Equation 6 demonstrates the objective function of the scheduling.
The objective is to minimize the Slowdown [9, 2]. This metric shows how long a job waits
(waitj) relatively to its size. Values close to 1 are the best since it indicates a small waiting time.

Etj ⩽ Wj,∀j (4)

Efj ⩾ Flj, ∀j (5)

minimize
J∑

j=0

waitj + Etj

Etj
(6)

2.2. Server configuration algorithms
2.2.1. Idle Fewest Server Degradation (IFS)
The main idea of this heuristic is maintaining more machines at the fastest speed. The servers
are sorted by the server’s power consumption, generating two variations : high power first (Idle
Descending Fewest Server Degradation - IDFS) and low power first (Idle Ascending Fewest
Server Degradation - IAFS). It puts all machines in the fastest state possible. Then, the algorithm
takes the first machine and reduces its speed one time. It will reduce the speed of this machine
until it goes to sleep or the power needed to maintain this state is lower or equal to the available.

2.2.2. Idle Servers Balanced Degradation (ISB)
This algorithm is similar to the previous one, and it is similar than the proposed by [7]. The ob-
jective of ISB is to reduce the speed of the servers equally, maintaining more running machines.
Server Balanced Degradation also has two variations : Idle Descending Servers Balanced De-
gradation (IDSB) and Idle Ascending Servers Balanced Degradation (IASB). This algorithm
makes a Round-Robin between the servers, changing the server in each interaction.

2.2.3. Highest Flops Lowest Deadline (HFLD)
HFLD is a heuristic that tries to find the best speed for the data center improving first the run-
ning machines. The heuristic estimates the changes with the greatest impact on the data center
flops inside the power available. Its main idea is presented in algorithm from Appendix B.
Differently from IFS and ISB, this algorithm decides the improvements based on the previous
state. HFLD has a list of all transitions power and flops, so it can fastly decide which one will
impact the most on the data center flops. The function more_power() will go through the list
searching the highest flops improvement inside the power available. However, if the power
usage is greater than the power available, it first puts the idle servers to sleep. Then, it reduces
the processor speed (Fs,d), while (Wj − Etj) × Fs,d ⩾ Flj − Efj is true, taking jobs with a higher
distance from walltime first. If these changes are not sufficient to match the power available,
the algorithm reduces the speed of the servers running the jobs.

2.3. Scheduling algorithms
The scheduling algorithms use the output of the previous algorithm (Ds,d,t) to define, for each
new job, the placement. Two well-known algorithms were used : First-Fit (FF) [13] and Easy
Backfilling (EBF) [16, 9, 2]. The First-Fit in the heuristics tries to fit the jobs using the jobs’ order
in the available servers until there is no more job to place [13]. Backfilling algorithm, on the
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other hand, uses the queue as a priority queue [16]. So, it tries to place all priority jobs on the
servers. When it is not possible to place the next priority job, the algorithm fills the "holes" with
other jobs but without delaying the priority one. Both, First-Fit and Easy Beackfilling, use four
job sorts, aiming to define the job priority [9, 2] : First-Come-First-Serve (FCFS), Descending
size, Ascending size, and Slowdown.

3. Experimental Environment

The platform consists of 10 Paravance servers and 10 Taurus servers from GRID5000 1. Appen-
dix C presents the values for each server state. The parameters are representative and quite
similar to other works [3, 24, 21]. This platform runs in the BATSIM simulator [6]. Appendix D
demonstrates the three power profiles representing renewable energy collected from solar pa-
nels and wind turbines at Toulouse. We have used these values as Pavail

t for each step. Re-
garding the workload, we have used a generator from [5]. This generator is based on Google
trace [22]. The workload generator creates 20 different workloads with 288 jobs, but they vary
in size and arrival. The first experiment runs every workload using power profile 3. The first
results of Section 4 are an average of these executions. Finally, one of these workloads is exe-
cuted with all profiles to evaluate the influence of the power capping on the algorithms. The
results of this multiple profiles execution are discussed in Section 4.1.4.

4. Results

The experiments were realized by combining each job scheduling possibility with each server
configuration. The next sections describe the results using the following notation : scheduling
algorithm (FF / EBF) + jobs’ order (Asc / Desc / FCFS / Slow) + server configuration algo-
rithm (IDFS / IAFS / IDSB / IASB / HFLD). For example, EBF Slow HFLD algorithm means
Easy-Backfilling with Slowdown jobs’ order and Highest Flops Lowest Deadline server confi-
guration.

4.1. Discussion
We have used three metrics to compare the algorithms : power violations, jobs killed, and slow-
down. These metrics are discussed individually in the following sections. Appendix E presents
the average result of all executions using Profile 3. From these executions, we have selected
four algorithms : EBF Slowdown HFLD, FF Slowdown HFLD, FF Asc IDFS, and EBF Slow
IDSB. Both HFLD algorithms have a good balance between the three metrics. FF Asc IDFS also
has a good balance but with a higher number of jobs killed. Finally, EBF Slow IDSB has the
best slowdown but with high violations. We solved the same problem as the heuristics using
Mixed-integer linear programming (MILP). It fully knows both power profile and job arrivals,
maximizing Equation 3. However, MILP takes a long time to find the optimal result. So, the ex-
periments compare with MILP to illustrate how far the heuristics are from the optimal. Table 1
shows the average distance from each algorithm to the result obtained by the MILP for each
workload. The table also presents the results of the execution of EBF Slowdown without server
configuration, maintaining all servers at maximum speed.

4.1.1. Power Violation
A violation is when the power usage is above the power capping. Even if Equation 1 is a
constraint, sometimes the heuristics can not avoid the power violation due to transition on→off.

1. https ://www.grid5000.fr/
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TABLE 1 – Average increase compared to MILP execution with Profile 3. The MILP has no
power violation nor job killed with a slowdown of 1.44. So, for example, EBF Slow no config.
has 1.87 of slowdown (1.44 from MILP plus 0.43 from the difference).

Algorithm Slowdown Kill Viol.
EBF Slow no config. 0.43 0 184
EBF Slow HFLD 2.90 19 3
FF Asc IDFS 2.91 28 3
FF Slow HFLD 4.48 14 3
EBF Slow IDSB 2.12 23 6

MILP could avoid violations by using the entire power profile to decide the configuration in
each time step. The heuristics provide a good alternative, dealing with the power fluctuations
reactively. However, it is not perfect, having some violations. These violations come from a
high power available in one step and a drop in the next one. With high power, they put seve-
ral servers to run. But if the power drops, the servers demand time and energy to go to sleep.
Therefore, one violation occurs. Appendix F shows it with MILP and HFLD. However, few
violations could be removed using a prediction technique to analyze the power tendencies.

4.1.2. Jobs Killed
A job is killed when there is not enough power to maintain it running (so the server goes
to sleep) or if the execution time is greater than the walltime. This metric is crucial because
a high number of jobs killed impacts the overall energy usage. The user could reintroduce
these jobs into the system using more energy (our scheduling does not do this automatically).
Figure 1 shows the number of jobs killed over the 20 workloads. The execution with no server
configuration does not kill any job since it maintains all servers at maximum speed. Besides this
execution, the best algorithm is First-Fit Slowdown HFLD, having almost every result below 20
jobs killed. This algorithm achieves that because it is idle-aware and reduces the speed of the
jobs with a longer deadline. Therefore, it tries to maintain the jobs which are closer to finish with
higher speed. The Easy-Backfilling of the same algorithm has a good result also, but with some
workloads above 30 jobs killed. First-Fit achieves better results in the jobs killed metric because
it runs more small jobs than Easy-Backfilling, due to the Easy-Backfilling priority awareness.
IDFS execution has high values of this metric, with its best result between 20 and 25. Finally,
IDSB results are very different, demonstrating that this algorithm struggles to deal with varied
workloads. Figure 1 also illustrates the total finished work over the 20 different workloads.
Each job killed impacts differently on this value since they have different sizes. The size is the
total flops to execute multiplied by the number of parallel resources. Both HFLDs have a good
value of total finished work compared with IDFS and IDSB. HFLD achieves these results since
it gives more speed to the closer jobs to finish. So, the other algorithms can kill jobs that are
almost finished.

4.1.3. Slowdown
Finally, the last metric is the slowdown. Figure 1 details the value of each execution. This metric
is important since an algorithm could maintain a low speed to meet the power capping, but it
will increase the slowdown because the running jobs will spend more time in the servers, and
the waiting time of the queue jobs will increase. This metric shows the impact of the power cap-
ping in QoS. IDSB has good results, because it maintains more servers running than the others
which allows running more jobs in parallel. However, it has more violations and more jobs
killed than the others. IDFS good results come from the ascending order that prefers allocating
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FIGURE 1 – The number of jobs, total of finished work and slowdown over the 20 executions
for Profile 3.

small jobs first. So, the jobs more waiting time-sensitive are the priority. First-Fit Slowdown
HFLD presents an outlier above 25, which is the worst of all executions. The reason for this be-
havior is linked with the job placement algorithm. First-Fit ignores the priority job, allocating
all the possible jobs from the queue. In contrast to this algorithm, Easy-Backfilling will priori-
tize the job with a higher slowdown. Nevertheless, the HFLD heuristics have a slightly higher
average value since they run more jobs, increasing the waiting time.

4.1.4. Multiple profiles
This section presents the experiments using one workload with the different profiles from Ap-
pendix D to compare the robustness of our algorithms. Figure 2 illustrates the results. IDFS kills
a large number of jobs. The HFLD has the best number of jobs killed using both Easy Backfilling
and First-Fit for all profiles. However, the First-Fit has a greater slowdown on profile 2. Easy
Backfilling Slowdown HFLD is a quite robust implementation, independent of the profile.

Kill 1

Viol. 1
Slow. 1

Profile 1
EBF Slow. HFLD
FF Asc. IDFS
FF Slow. HFLD
EBF Slow. IDSB

Kill 1

Viol. 1
Slow. 1

Profile 2
Kill 1

Viol. 1
Slow. 1

Profile 3

FIGURE 2 – One workload execution on different power profiles. The power violation range is
between 0 and 6. The number of jobs killed metric is between 15 and 44. Finally, Slowdown
values are between 4.04 and 11.60.

5. Conclusion

Datazero2 is a project that aims to model a green by-design data center powered by only re-
newable sources. Renewable sources introduce uncertainties due to their intermittence. The-
refore, it is vital to design algorithms to deal with these uncertainties. This article investigates
a number of scheduling and power capping heuristics, in an attempt to identify the best al-
gorithms to handle fluctuating power profiles without hindering job execution. Combining
Easy-Backfilling job scheduling with Slowdown metric to sort the jobs’ queue and the Highest
Flops Lowest Deadline as the server configuration algorithm provided the best balance bet-
ween power violations, killed jobs, and slowdown. The results also show that it is essential
to consider the impact on the running jobs in the power capping decisions. Future works will
include other workload types, such as services. Also, we will introduce more flexibility in the
decision-making changing in the power capping to improve QoS. Finally, we will include po-
wer predictions in the decision-making.
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Appendices
A. Experiments carbon footprint

The experiments run in 3h and 27min on 6 CPUs Core i7-10700, and draw 0.21 kWh. Based
in France, this has a carbon footprint of 8.13 g CO2e, which is equivalent to 0.01 tree-months
(calculated using green-algorithms.org v2.1 [15]).
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B. Highest flops with lowest deadline algorithm

Algorithm 1: Highest flops with lowest deadline
input : Fs,d,d ′ , Ps,d,d

′ , Ds,d,t−1, and Pavai
t

output: Ds,d,t

1 begin
2 Ds,d,t ⇐ Ds,d,t−1;
3 if calculate_power_usage() = Pavai

t then
4 break;
5 end
6 if calculate_power_usage() < Pavai

t then
7 return more_power();
8 end
9 Ds,d,t ⇐ put_idle_servers_sleep();

10 if calculate_power_usage() < Pavai
t then

11 return Ds,d,t;
12 end
13 for j in J.sort() do
14 Ds,d,t ⇐ minimal_state(j);
15 if calculate_power_usage() < Pavai

t then
16 return Ds,d,t;
17 end
18 end
19 repeat
20 j ⇐ get_highest_deadline(J);
21 Ds,d,t, _sleep ⇐ reduce_speed(j);
22 if _sleep then
23 Ds,d,t = kill_job(j);
24 end
25 if calculate_power_usage() < Pavai

t then
26 return Ds,d,t;
27 end
28 until J = ∅;
29 return Ds,d,t;
30 end

C. Server example

TABLE 2 – Server definition example. States 0-6 are final states.
State (d) Paravance Taurus

Ps,d (W) Fs,d (Gflops) Ps,d (W) Fs,d (Gflops)
0 200.5 38.4 223.7 18.4
1 165.1 34.56 189.03 16.56
2 136.76 30.72 161.28 14.72
3 114.69 26.88 139.67 12.88
4 98.10 23.04 123.43 11.04
5 86.22 19.20 111.79 9.20
6 (sleep) 4.5 0 8.5 0
7 (on→off) 65.7 0 106.63 0
8 (off→on) 112.91 0 125.78 0
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D. Power profiles
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FIGURE 3 – Power profiles representation of the experiments.

E. Experimental results
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FIGURE 4 – Average results for the 20 different workloads with Profile 3. The values are in-
verted (so the −1), generating a higher area to lower values (which are the best). The power
violation range is between 3 and 7. The number of jobs killed metric is between 14 and 54. Fi-
nally, Slowdown values are between 3.5223 and 16.9373.
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F. Power violation
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