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Abstract
IoT Device Management (DM) refers to registering, configuring, observing, and updating IoT
devices that are deployed in a given environment. In practice, DM tends to be ensured by
several actors such as operators, device manufacturers, or service providers, each operating in-
dependently via its legacy DM solution. Such siloed DM capabilities are limited in addressing
IoT threats related to device dependencies, such as cascading failures. Indeed, these threats
spread across devices managed by different DM actors, and their mitigation can no longer be
performed without collaborative DM efforts. To achieve such collaboration, DM actors need
to be aware of the global topology of dependencies. Determining such topology is challeng-
ing, requiring to infer dependencies from the data held by different actors. In this work, we
propose a framework that infers such topology on-demand by accessing and aggregating data
from legacy DM solutions managed by different actors. Thanks to Semantic Web standards, the
framework enables unified data extraction, interpretation, and usage across heterogeneous DM
solutions. We leverage the digital twin technology to expose on-demand the global topology of
dependencies. We have integrated our solution within Orange’s digital twin platform Thing in
the future and demonstrate its effectiveness by automatically inferring the dependencies topol-
ogy in a smart home scenario managed by ground truth DM solutions such as Orange’s USP
Controller and Samsung’s SmartThings platform.
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1. Introduction

The rapid growth of the Internet of Things (IoT) is increasingly impacting people’s lives, lead-
ing to promising added-value services such as smart homes and smart cities [16]. IoT devices
represent the main element in creating IoT value by observing, interacting, and implementing
functions with minimal human intervention [24]. Consequently, it is critical to ensure their
well-functioning and security. This is referred to as IoT Device Management (DM)1.
In practice, DM is ensured by multiple actors, which can be operators, manufacturers, or ser-
vice providers, each offering their own DM solution. Therefore, DM is performed in a dis-

1 IoT Device management is defined by a set of operations that enable remote management of IoT devices through-
out their lifecycles, such as firmware updates, reboot, and configuration.
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tributed and siloed manner [30, 9, 20]. Although siloed DM solutions are capable of keeping
the well-functioning of IoT devices, they are still limited when it comes to the emerging IoT
threats, which are related to the dependencies among IoT devices managed by different actors.
One such threat is the phenomenon of cascading failure, where the failure of one device trig-
gers a cascade of undesired state changes to devices that depend on it [31]. Failures during
the execution of DM operations e.g., firmware update on interdependent devices are another
dependencies-related threat. Indeed, DM operations cause devices to be temporarily unable to
provide their services, which can lead to failures on dependent devices [24, 33]. In addition,
dependencies between devices are exploited to launch attacks in connected environments [32].
To combat these threats, DM actors must be aware of the dependencies topology between
IoT devices. These dependencies are surprisingly abundant, usually undocumented, rarely
static [10], and they are governed by different DM actors i.e., dependencies information is dis-
tributed across siloed DM solutions managed by different DM actors.
In this work, we propose a collaborative framework for on-demand inference of the global
topology of IoT dependencies, by accessing and aggregating data from legacy DM solutions.
This paper is organized as follows: First, we present a motivating and representative use case
that illustrates dependencies-related threats in a smart home scenario managed by several DM
actors. Then, we present a characterization for IoT dependencies, the proposed framework,
and the evaluation results. Finally, we discuss related work and point out our future work.

2. Motivating use case

2.1. Description
The smart home scenario consists of three intelligent systems (described in Appendix Table 1),
namely lighting control system, temperature control system, and security control system, deployed in
a home consisting of a room and a kitchen (an illustrative view is given in Appendix Figure 4).
A gateway connects devices in the room to the Internet, while a Wi-Fi repeater connects de-
vices in the kitchen. A publish/subscribe broker installed in the gateway exposes the sensors
services in the form of topics such as temperature topic. The SmartThings platform2 is used to
enable a set of automation rules described in Appendix Table 2. From the perspective of DM,
devices in the smart home are managed by four DM actors: 1) An operator that monitors the
connectivity devices e.g., gateway, using USP controller3. 2) A device manufacturer that ensures
DM services such as firemware update also using the USP controller. 3) A service provider that
ensures automation services, using the SmartThings platform. 4) Another service provider man-
aging service exchange among devices through the broker using the Apache Kafka solution [1].

2.2. Illustration of the dependencies-related threats
The main problem caused by dependencies is the phenomenon of cascading failure. Let us
take the scenario of the light bulb in the room fails. This failure propagates to the light bulb
dependent devices and services: 1) the light control unit becomes inoperable, 2) the vocal as-
sistant cannot respond to the prompt ”Turn off the lights”, and 3) the SmartThings platform
can no longer turn the light bulb to red when it detects intruders. Another issue is failures
when performing DM operations on interdependent devices. Suppose the gateway is rebooted
while updating the vocal assistant. Due to the connectivity dependency, the gateway reboot
interrupts the vocal assistant’s Internet connection, which results in the firmware image not

2 SmartThings is Samsung’s IoT platform that enables the creation of automation rules [5].
3 User Service Protocol (USP) is a standard and an ongoing project of the Broadband Forum (BBF) for device man-
agement [8]. USP controller is Orange’s implementation of this standard.
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being downloaded correctly and the vocal assistant failing after the update [24, 33]. Note that
DM failures especially firmware update ones are difficult to mitigate even with the reboot op-
eration [24]. Dependencies are also exploited to compromise the user’s security. For example,
an attacker can exploit the state dependency between the air conditioner and the windows (see
Rule 2 in Appendix Table 2) to gain access to the home, by disabling the air conditioner to open
the windows [32].

3. IoT dependencies characterization

We conducted an analysis study of the dependencies that lead to the threats illustrated in Sec-
tion 2. The result of this study is a taxonomy of threatening IoT dependencies (See Figure 1).
We distinguish two types of IoT dependencies: direct and indirect. IoT dependencies are direct
when IoT devices use services of each other. We call this type of dependencies Service depen-
dencies. For example, the alarm using the smoke sensor’s detection service has a service depen-
dency on the smoke sensor. A special kind of service dependencies is Connectivity dependencies
when IoT devices use connectivity services offered by connectivity devices such as a gateway.
Interactions between sensors and actuators through the physical environment create indirect
dependencies between them called Environment-based dependencies. For example, the tempera-
ture sensor has an environment-based dependency on the air conditioner because it measures
the room temperature modified by the air conditioner. Indirect dependencies can also arise
from applications running on top of IoT devices, thus forming Application-based dependencies.
Indeed, an automation rule applies actions to a set of devices depending on how the state of
other devices changes, creating State-based dependencies. For example, an automation rule may
open the two windows depending on the state of the air conditioner (see Rule 2 in Table 2). In
addition, IoT applications generate an implicit exchange of services between IoT devices. Con-
sider an application using the temperature value returned by the temperature sensor to adjust
the air conditioner, here the air conditioner implicitly uses the temperature sensor service (see
Rule 1 in Appendix Table 2). We call these dependencies Implicit service dependencies.
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Figure 1: IoT dependencies taxonomy
4. Proposed framework

We propose a collaborative framework (see Figure 2) that enables on-demand inference of IoT
dependencies (presented in Section 3) from siloed DM solutions. It relies on Orange’s digital
twin4 platform Thing in the future (Thing’in)5 [7] to expose the inferred dependencies topology
and to communicate with the DM actors. It is based on the knowledge graph6 (KG) model
for IoT dependencies, with nodes representing devices and edges representing dependency

4 ”A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified fre-
quency and fidelity” [2].
5 A multi-actor digital twin platform engaged in building innovative services based on contextual data.
6 ”Knowledge Graphs are very large semantic nets that integrate various and heterogeneous information sources to
represent knowledge about certain domains of discourse” [14].
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relationships between them. More precisely, we define the IoT-D ontology7 (described in Ap-
pendix B) that allows representing, in the form of KGs, a set of context data from which IoT
dependencies can be inferred. Context data refers to data describing connectivity topology,
service exchanges between devices, or applicative automation rules. IoT dependencies KG is
inferred from context KGs using the three steps relying on Semantic Web standards8 : Context
extraction, Entity resolution, and Dependency inference. The first step extracts the context data
from legacy DM solutions and transforms it into KGs, the second aggregates the extracted con-
text KGs, and the last infers the dependencies topology from the aggregated context KGs.

Thing in the future

Digital twin system

Context  extraction

Extracted context KGs

Resolved context KGs 1

Entity resolution

sameAs

2 Dependency inference3

Dependencies topology

Device 

manufucturer

Service 

provider
Operator
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Figure 2: Framework overview

4.1. Step 1: Context extraction
This step aims to extract the context data described in the IoT-D ontology and transform it into
KGs. This data is distributed across DM solutions managed by different DM actors. Take the
use case example: the connectivity topology is owned by the operator, the service exchange
belongs to the service provider managing the Kafka broker, the device capabilities and services
are managed by the device manufacturer, and the device interactions at the application layer
are owned by the service provider managing the SmartThings platform. To extract this data, we
rely on the Thing Description (TD) standard [6] to describe the extraction modalities that allow
data extraction from DM solutions. An extraction modality includes information about the
data to be extracted such as the URL of the extraction and the format e.g., json. It is provided
to the framework by DM actors and stored in Thing’in to be used by the context extraction
process. Note that the use of the TD standard enables technology-agnostic data extraction,
which eases the integration of the heterogeneous DM solutions. An example of the extraction
modality provided by the operator to extract the connectivity topology is given in Appendix C.
The result of context extraction from the use case is shown in Appendix Figure 6.

4.2. Step 2: Entity resolution
oThe extracted context KGs may contain duplicate entities, such as devices with different repre-
sentations. For example, the temperature sensor may be named tempSensorModelX in the device
manufacturer’s USP controller, but it is registered as Temperature in the broker. These dedupli-
cated representations must be identified and resolved to allow consistent reasoning across the
extracted KGs. This problem is referred to in the literature as the Entity Resolution (ER) prob-

7 Ontology is a shared vocabulary that describes a set of concepts and relationships between them [17].
8 Semantic Web standards or technologies, standardized by the World Wide Web Consortium (W3C), ”enable people
to create data stores on the Web, build vocabularies, and write rules for handling data ” [3]. Ontologies and inference
rules that we use in this work are part of Semantic Web standards.
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lem, which has been studied extensively for over 70 years [13, 29, 22, 12]. To address this prob-
lem, we propose an ER approach based on inference rules9 by leveraging the Shapes Constraint
Language (SHACL) standard [4]: We assume that extracted KGs contain a set of DM metadata
called resolution attributes for each entity e.g., device hostname for IoT devices. These attributes
are used by a SHACL rule (see Appendix Listing 5) to automatically creates the sameAs rela-
tionship between the similar entities in the extracted KGs. The similarity is computed using the
weighted10 sum of string similarities e.g., Jaro similarity [19] between the resolution attributes.
The SHACL rule performs the similarity calculation using SHACL functions. For an example
of strict string matching formalized as a SHACL function, see Appendix Listing 4. To the best
of our knowledge, this is the first ER approach based on the SHACL standard. The result of
performing the proposed ER approach for the use case is shown in Appendix Figure 7.

4.3. Step 3: Dependency inference
We propose a set of SHACL rules that allow automatic inference of direct and indirect depen-
dencies from the resolved KGs. These SHACL rules infer dependencies relationships between
devices based on existing relationships in the resolved KGs. For instance, the SHACL rule pre-
sented in Appendix Listing 3 infers state-based dependency by creating hasStateDependencyTo
relationship between two devices when it finds an IoT application that acts on one device ac-
cording to the state of another. The inferred dependencies topology from the use case is shown
in Appendix Figure 8. It is provided as a service for DM actors to enable human-based risk as-
sessment and it can be integrated to other processes to mitigate dependencies-related threats.

5. Evaluation

We carried out a set of quantitative evaluations by: 1) measuring the completion time of the ER
and dependency inference steps on large-scale smart home scenarios; 2) comparing SHACL to
Semantic Web Rule Language (SWRL) 11, another formalism for inference rules used by com-
peting approaches for direct dependencies inference [26] and entity resolution [11]. The com-
parison was performed according to step 3, dependency inference. The test data sets consist of
a set of smart home scenarios with different scales built using a data generator, which injects
duplicates into the semantic description of the smart home scenario presented in Section 2.
We executed tests on an Ubuntu 20.04 with 32Go RAM and Intel Corei7 2.5 GHz processors.
SHACL inference is implemented using TopBraid SHACL API 12(version 1.0.1) and SWRL in-
ference is performed using Openllet reasoner with OWL API 13(version 2.6.5).
We found that the completion time of the dependency inference step is almost negligible (with
32.5 ms for 868 triples and 63 ms for 4340 triples) compared to the ER completion time (see Fig-
ure 3a), which is more time-consuming due to: 1) the graph pattern complexity of the ER rules
and 2) the calculations performed by the ER rules in addition to the inference task. Overall, the
framework’s performance appears to be sufficient for human-based risk assessment. However,
this time should be discussed more from the perspective of using the proposed framework
for automating the management of cascading failures. The result of comparing SHACL with
SWRL (see Figure 3b) according to the dependency inference time shows that SHACL performs
the best, especially for a large number of dependencies. This can be justified from two perspec-

9 Inference rule allows deriving new semantic relations in a KG by reasoning on existing ones.
10 For each resolution attribute, we associate a weight such as 0.9 for the serial number and 0.5 for the hostname.
11
https://www.w3.org/Submission/SWRL/

12
https://github.com/TopQuadrant/shacl

13
https://github.com/Galigator/openllet
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tives: 1) from the technological perspective, SHACL has the same format as the validated data,
which simplifies the technology stack required to implement it, unlike SWRL [15]; 2) from the
theoretical complexity perspective, SWRL complexity is exponential [23]. Meanwhile, SHACL
complexity is polynomial14 [28]. We make available online the source code of the presented
evaluation and the generated data sets 15.
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Figure 3: Experiments results

6. Related work

As far as we know, this is the first attempt to infer IoT dependencies in multi-actor DM scenar-
ios. Nonetheless, our work learns from related research: IoT dependencies modeling and ex-
traction are slightly treated in the literature. The works [25], [18], [26] propose static models for
IoT dependencies through Satisfiability Modulo Theories (SMT), Markov chain, and semantic
ontologies, respectively, to assess IoT risks. However, they do not consider the dynamic nature
of IoT dependencies, where dependencies information is extracted and maintained by human
intervention. The work [21] comes up with a theoretical proposal for a dynamic graph-based
model where explicit dependencies are extracted by analyzing network traffic. However, in-
direct dependencies, especially application-based ones, are not addressed. Moreover, existing
solutions do not consider the practical reality: IoT is managed by multiple actors, although de-
pendency information is distributed across siloed DM solutions managed by multiple actors.

7. Conclusion and Future work

In this work, we shed light on our practical framework that infers IoT dependencies topology
from the siloed DM solutions in order to help decision-making when addressing dependencies-
related threats. This framework leverages the established Semantic Web standards of the World
Wide Web Consortium (W3C) such as TD and SHACL. It makes use of the digital twin tech-
nology to address the dynamic aspect of IoT dependencies. It is based on a three-step process
involving extracting data from siloed DM solutions, resolving this data, and finally inferring
device dependencies. We validated the proposed solution by generating dependencies topol-
ogy from smart home scenarios. However, we believe that our approach is generic enough to
be applied to IoT applications other than smart homes. Moreover, it can be applied in other do-
mains where there is a need to connect siloed and dynamic data sources to unlock innovative
use cases. In future work, we plan to explore another collaborative service, which is the col-
laborative management of the cascading failure using the extracted topology of dependencies.
We intend to enable automatic failure recovery in multi-actor scenarios.
14
https://book.validatingrdf.com/bookHtml013.html

15
https://github.com/Orange-OpenSource/ISWC-ReasoningCode
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A. The smart home architecture
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Figure 4: The simulated smart home architecture
System Description

Light control
system

Ensures comfortable and optimal light management in the home. The system relies on a light sensor,
two presence detection sensors, bulbs installed in the room and the kitchen, and a central light control
unit. The latter uses the brightness measurement service supplied by the light sensor, the presence
detection services provided by the presence sensors, and the bulbs control services for controlling light
according to the home user’s presence. Bulbs are controllable through the vocal assistant.

Temperature control
system

Relies on an air conditioner and a temperature sensor to control the home temperature. It is mainly
based on the automation rules 1 and 2 described in Table 2. The air conditioner is also controllable via
the vocal assistant and the smartphone.

Security control
system

Launches an alarm when intruders or fires are detected. It consists of an alarm system that uses the
presence detection services provided by the presence sensors to detect intruders. It also uses temperature
measurement and smoke detection services to detect fires. This system is reinforced by the automation
rules 3 and 4 described in Table 2.

Table 1: The smart home systems
No. Type Automation Rule

1 Comfort Update the air conditioner regarding the temperature returned by the
temperature sensor.

2 Comfort Open the two windows when the air conditioner is deactivated.
3 Security Open the door and both windows upon detection of fire.

4 Security Notifies the user, closes the windows, closes the door, and sets bulbs color
to red when detecting an intruder while the user is out of the home.

Table 2: The smart home automation rules
B. IoT-D ontology
We designed the IoT-D ontology (shown in Figure 5) that provides an interoperable description
of the context from which the various types of dependencies described in Section 3 can be
derived. It involves three modules:

• Device-Device Interaction module describes the capabilities of IoT devices in terms of
service provisioning and usage to model the context of direct dependencies. It is based
on the enrichment of the SAREF16 ontology by describing the direct exchange of services
between devices through the relation IoTD:consumes and specializing the saref:Service and
saref:Device to account for connectivity devices and services, allowing representation of
service and connectivity dependencies.

• Device-Environment Interaction module, also based on the SAREF ontology, represents
the interaction of devices within the physical environment through sensing and actuation,
enabling the representation of environment-based dependencies.

16
https://saref.etsi.org/core/v3.1.1/

https://saref.etsi.org/core/v3.1.1/
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• Device-Application Interaction module describes device interactions in IoT applications.
Based on the EuPont 17 [27] ontology, an IoT application is represented using a set of
IoTD:Rule and IoTD:Action that are executed by saref:Service. IoTD:Rule is in the form
IF IoTD:Trigger Then IoTD:Action and triggers are related to a change in devices state
saref:State. This trigger-action based model allows representing state dependencies be-
tween devices, i.e., when an IoT application acts on one device based on the state of an-
other. It also allows representing implicit service dependencies in the form of data flows
between IoTD:Action, represented via the DK 18 Ontology class dk:DataFlow.
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Figure 5: IoT-D ontology
C. Extraction modalities
Consider the extraction of the connectivity topology from the gateway. Thus, the operator
injects into Thing’in the extraction modality described in Listing 1 that enables the extraction
of the connectivity topology from the operator’s USP controller, using the link presented with
the property hasTarget (line 10-11). The extracted data shown in Listing 2 is then transformed
to KG according to the vocabulary of the ontology IoT-D and stored in Thing’in.

Listing 1: Connectivity topology extraction
modality.

1 /*Declaration of the extraction data
source here is the gateway*/

2 demo:Gateway rdf:type
3 IoTd:ConnectivityDevice;
4 td:hasPropertyAffordance[
5 td:hasForm [
6 hctl:forContentType
7 "application/json" ;
8 hctl:hasOperationType
9 td:readProperty ;

10 /*The definition of the extraction
link*/

11 hctl:hasTarget
12 "{$USPLink}/dataModel
13 =Device.IEEE1905.NetTopology."]].

Listing 2: Part from data extracted from
the gateway by accessing USP controller of
the Operator.

1 [ {"requested_path":
2 "Device.IEEE1905.NetTopology.",
3 "resolved_path_results": [
4 {
5 "resolved_path":
6 "Device.IEEE1905.NetTopology.",
7 "result_params": [
8 {
9 "param_name": "IEEE1905Device.1.FriendlyName",

10 "value": "TempSensor"
11 },
12 { "param_name": "IEEE1905Device.2.FriendlyName",
13 "value": "bulb1"
14 },
15 { "param_name": "IEEE1905Device.3.FriendlyName",
16 "value": "LightSensor"
17 },
18 {
19 "param_name": "IEEE1905Device.4.FriendlyName",
20 "value": "AirConditioner"
21 } ...

17
https://elite.polito.it/ontologies/eupont.owl

18
http://www.data-knowledge.org/dk/1.2/index-en.html

https://elite.polito.it/ontologies/eupont.owl
http://www.data-knowledge.org/dk/1.2/index-en.html
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D. SHACL rules and functions

This part illustrates SHACL rules and functions used for entity resolution and dependencies
inference. SHACL rules are used to create new relations in a KG based on other ones. Mean-
while, SHACL functions are used to perform calculations in SHACL rules. Both are executed
by a software component called reasoner.

Listing 3: SHACL rule for State-based depen-
dencies inference

1 dp:StateBasedDependency
2 rdf:type sh:NodeShape;
3 sh:targetClass dp:IoTDevice;
4 sh:rule [
5 rdf:type sh:SPARQLRule ;
6
7 sh:construct ’’ ’’ ’’
8 /*Construct the dependency relationship (here is the
state-based dependency) */

9 CONSTRUCT {
10 $this dp:hasStateDependencyTo ?device .
11 }
12 /*Constraints to check before constructing the dependency

relationship */
13 /*Constraints are contextual relationships */

14 WHERE {
15 /*Contextual relationships required to infer the state-based

dependency*/
16 ?device a dp:IoTDevice ;
17 saref:hasState ?state .
18 ?trigger a dp:Trigger
19 dp:relatedTo ?state .
20 $this core:offers ?service .
21 ?service a saref:Service ;
22 dp:allowsAction ?action .
23 ?rule a eupont:Rule ;
24 eupont:hasAction ?action ;
25 eupont:hasTrigger ?trigger .
26 }
27 ’’ ’’ ’’ ;
28 ] ;
29 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Listing 4: SHACL function of strict string
matching

1 dp:strictStringMatching
2 a sh:SPARQLFunction ;
3 /*Define the operators of the function */
4 sh:parameter [
5 sh:path dp:op1 ;
6 sh:datatype xsd:string ;
7 sh:description "The first operand" ;
8 ] ;
9 sh:parameter [

10 sh:path dp:op2 ;
11 sh:datatype xsd:string ;

12 sh:description "The second operand" ;
13 ] ;
14 /*Define the output type*/
15 sh:returnType xsd:double ;
16 /*Define the function call */
17 sh:select """
18 SELECT
19 (<http://www.example.org/StrictStringFunction>($op1, $op2)
20 AS ?result)
21 WHERE {
22 }
23 """ .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Listing 5: SHACL rule for Entity Resolution
1 dp:EntityResolution
2 rdf:type sh:NodeShape ;
3 sh:targetClass dp:IoTDevice ;
4 sh:rule [
5 rdf:type sh:SPARQLRule ;
6
7 sh:construct ’’ ’’ ’’
8 /*Construct the sameAs relationship between the similar
device’s representations*/

9 CONSTRUCT {
10 $this owl:sameAs ?device .
11 }
12 /*Constraints to check before building the sameAs relationship*/
13 /*Constraints are similarity evaluation between device’s

representations based on the resolution attributes*/
14 WHERE {
15 {
16 /*For each device representation ($this), find its most

similar representation (?devices) */
17 SELECT $this ?device
18 WHERE
19 {
20 {SELECT $this
21 /*Calculate the similarity by calling SHACL functions */
22 (MAX(SIM(?Attribute($this),?Attribute(?device))) AS ?val)
23 WHERE{
24 /*Select the resolution attributs used in the similarity

calculation */
25 OPTIONAL
26 {$this dp:hasResolutionAttribut ?Attribute($this) .}
27 $this orgIoT:source ?s .
28
29 OPTIONAL
30 {?device dp:hasResolutionAttribut ?Attribute(?device).}
31 ?device orgIoT:source ?src .
32 FILTER (?device!=$this
33 && ?s="DM" && ?src="OTHER")
34 }
35 group by $this
36 }
37
38 OPTIONAL
39 {$this dp:hasResolutionAttribut ?Attribute($this) .}
40 $this orgIoT:source ?s .
41 OPTIONAL
42 {?device dp:hasResolutionAttribut ?Attribute(?device).}
43 ?device orgIoT:source ?src .
44 Filter(?device!=$this
45 && ?s="DM" && ?src="OTHER")
46 && SIM(?Attribute($this),?Attribute(?device)) } } }
47 ’’ ’’ ’’ ;
48 ] ;
49 .
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E. Thing’in views

Isolated Context KGs extracted from DM solutions

Figure 6: Context extraction

Entity Resolution  

Figure 7: Entity resolution
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Dependency topology
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Service 

dependency

Alarm

P: Processor

S: Sensor
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Figure 8: Dependency inference
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